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Chapter 1

Introduction

With mathematical modeling and computer simulation, we are now able to solve prob-

lems in many fields such as weather and pollution forecasts, underwater measuring, semi-

conductor device simulation and so on. When dealing with these problems, we are often

required to solve partial differential equations(PDEs). Because it is usually very difficult

to solve such problems mathematically, numerical algorithms or schemes become quite in-

dispensable to obtain acceptable approximate solutions. Nowadays, many methods have

been developed, such as finite element method(FEM), the finite difference method(FDM),

the finite volume method(FVM) and so on (cf.P.Knabner [30] for an overview and basic

introduction). Among these methods, the finite element method is a popular one, and has

been integrated into many computer aided engineering(CAE) systems. The popularity

of FEM is proberbly due to its sound mathematical foundations such as a priori and a

posteriori error estimations as well as its practicality. The focus of this work is on error

analysis of the finite element methods.

There is a large number of literatures on FEM, for example, both textbooks of C.

Johnson [24] and P.G. Ciarlet [15] have lists of numerous references in this area. Simply

speaking, the finite element method is a kind of Galerkin’s method, in which a variational

form of the given PDE is solved in a finite dimensional space. The obtained solution uh, as

an approximation of the exact one u, is usually different from u. To assure the reliability

and efficiency of the computations, it is important to estimate the error u − uh in some

suitable norms. For this purpose, a priori and a posteriori error estimation theories for

FEM have been developed to estimate and further to control the approximation errors.

A priori error estimate is based on the exact but unknown solution together with given
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data to predict the final computation error, while a posteriori one also utilizes the knowl-

edge of the obtained computational result uh. In either case, there appear a number of

positive constants besides the standard discretization parameter h and norms, but it has

been proved very difficult to evaluate such constants explicitly. For quantitative purposes,

however, it is essential to evaluate or bound these constants as accurately as possible, be-

cause sharper estimates enable more efficient finite element computations. Therefore such

evaluations have become progressively and increasingly important and have specifically

been attempted for adaptive finite element calculations relying on a posteriori error esti-

mates. At the beginning of Chapter 2, we explain in detail how to derive these constants

and demonstrate their role in the error estimation.

The need of explicit evaluation of the constants mentioned above also comes from

mathematical proofs based on numerical verifictions. As is well known now, we can

monitor the round-off error of floating point computation in the computer by the interval

analysis [41, 42, 19]. Utilizing theories of verified computations, such as known as Nakao’s

theory [38], Nakao gave mathematical proofs of existence of the solutions for various

elliptic problems (cf. [37, 52] and the references therein). However, there are also various

error constants to be evaluated for quantitative error estimates. The accurate estimation

of these constants has great effects on the success of the interval computation.

Evaluation of the error constants has been proved to be very difficult. Some people

tried to give rough bounds by the path integration method [48, 40], or by the interpolation

remainder theory [21, 10, 9, 44]. In [4, 47], the finite element method was used to provide

approximate evaluations without estimation for the approximation error. The interval

computing was also employed to provide quite satisfactory enclosing a certain constant

[36, 39], where the computation was done with quite complex procedures.

As we will see, interpolation error on narrow element is related to the dependency

of constant on the geometric shape of the element. Babuška and Aziz considered the

case of triangular element and proposed the ”maximum angle condition”[6], which states

that, if the maximum interior angle is fixed, the H1 norm of Lagrange interpolation error

is bounded even the smallest interior angle approaches zero. In the 3D case, the maxi-

mum angle condition for nodal interpolation on tetrahedron element was also discussed

in [1, 31], where it was shown that the error in H1 norm cannot be bounded under the

”maximum angle condition”, so that some other kinds of interpolations rather than La-

grange one may be recommended.
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Outline of our research

In the following chapters, we will study various error constants appearing in the er-

ror estimates of conforming and nonconforming linear triangular FEMs. The obtained

constant values or upper bounds will be used to give quantitative error estimates for the

finite element solutions.

In Chapter 2, we will derive some fundamental estimates for the interpolation error

constants appearing in the conforming linear triangluar finite elements. For each constant,

we characterize them by appropriate Rayleigh quotient over a specified linear space, and

then study the properties of the constant, such as the continuity, monotonicity, asymp-

totic behaviours when one edge tends to zero, and so on. In this work, we again verify

the ”maximum angle condition” by analyzing the dependency of constants on geometric

parameters of the element.

We will also try to determine the concrete values of constants. In the case of isosceles

right triangle, we successfully determine several constants, including the Babuška-Aziz

constant [28]. By showing these constants to be related with the root of some transcen-

dental functions, we can evaluate the constants with arbitrary precision. For some other

constants, we also find reasonable upper bounds. Thus it becomes possible to perform

quantitative interpolation error estimation and consequently computable error evaluation

of finite element solution.

In Chapter 3, we present quantitative error estimates for the linear nonconforming

finite element. More specifically, we introduce the Fortin interpolation and another edge-

wise interpolation, and then study the error constants appearing there. Although we can-

not determine the concrete values for these constants even in the case of special triangles,

we are able to give upper bounds for them by utilizing the methods established in Chapter

2. The research implies that the maximum angle condition is also important in the linear

nonconforming FEM. Some results in triangular element are also extended to the 3D case.

In Chapter 4, we consider eigenvalue problems of the Laplace operator and propose

a posteriori estimation method to evaluate the constants which are associated to second
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order ODE’s. As we will see, search for concrete values of the error constants usually

results in solving some eigenvalue problems for operator −∆ or ∆2, where various con-

straint conditions are imposed on the associated function spaces, for example, vanishing

of integration over the domain. Due to such constraints, the eigenfunctions will be subject

to nonhomogeneous Dirichlet or Neumann bounding conditons and hence the eigenvalue

is very difficult to obtain. We solve one of these problems by constructing an auxiliary

function to make the boundary condition homogeneous, adopting the ideas of Nakao in

[36, 39].

As an application of our proposed method, we also consider the eigenvalue problem

of Laplacian over disk with the homogeneous Dirichlet condition, and give quantitative

upper and lower bounds for the minimum eigenvalue.

In Chapter 5, we give a hypercircle-based a posteriori error estimates method for the

FEM solutions of Poisson’s equation, where the linear conforming FEM and nonconform-

ing one are used together. Once the verified computation becomes truly reliable, the

method is expected to give mathematically correct error estimate. It should be pointed

out that our proposed method can even be applied to singularity problem, for exam-

ple, Poisson’s equation with homogeneous Dirichelt boundary condition on the L-shaped

domain. The computational results demonstrate the validity of this method in such a

case.

4



Chapter 2

Conforming P1 triangular finite
element

2.1 Motivation of research on error constants

Where do the error constants come from and why do we consider them?

As an answer to this question, we would like to explain the motivation of our research

on the error constants and also demonstrate the important role of error constants espe-

cially in error analysis for finite element method (FEM).

2.1.1 Conforming P1 finite element for model problem

We start with Poisson’s equation as a model problem, and will apply the conforming

P1 finite element to find approximation of the solution.

Let Ω ⊂ R
2 be a polygonal domain with the boundary Γ. Given f ∈ L2(Ω), there

exists a unique solution u ∈ H1(Ω) that, in the sense of distribution, satisfies the following

Poisson’s equation with homogeneous Dirichlet boundary condition

−∆u = f in Ω, u = 0 on Γ . (2.1.1)

Thus, the function u ∈ H1
0 (Ω) is the unique solution of the variational problem,

(∇u,∇v) = (f, v), ∀v ∈ H1
0 (Ω) . (2.1.2)
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For this well-posed problem, we can define an operator G by G : f ∈ L2(Ω) → u ∈ H1
0 (Ω).

Here we also assume that the problem is a regular one (cf. Chapter 3.2 of [15]), that

is, the solution u ∈ H2(Ω) ∩ H1
0 (Ω) and there exists a positive constant C ′ such that

‖u‖H2(Ω) ≤ C ′‖f‖L2. As is known, if the domain Ω is a convex polygonal one, the

problem in (2.1.1) is a regular one, where the constant C ′ can be taken as the unity.

In most cases, due to the complexity of the domain Ω and the given data f , we cannot

obtain the explicit solution for the given problem. However, we can approximate the so-

lution in finite dimensional spaces by utilizing the corresponding variational forms, where

the theories of finite element methods ensure the validity and reliability of the compu-

tation. In this chapter, we will focus on the conforming P1 FEM and then in the next

chapter, the case of nonconforming P1 FEM.

To apply the triangular P1 FEM to the problem above, let us consider a regular family

of triangulations {T h}h>0 of Ω, ( cf.[15] for the terminology regular ) and then construct

the finite element space V h
conf ⊂ H1

0 (Ω) for each T h:

V h
conf := {v ∈ C(Ω)| v is linear on each K ∈ T h; v = 0 on ∂Ω. } , (2.1.3)

where C(Ω) denotes all the continuous function over Ω(:= closure of Ω). Thus the finite

element approximation uh ∈ V h
conf of the above u ∈ H1

0 (Ω) is now uniquely determined

by imitating (2.1.2) in V h
conf :

(∇uh,∇vh) = (f, vh), ∀vh ∈ V h
conf . (2.1.4)

Within this section, we will also abbreviate V h
conf as V h if there is no fear of confusion.

Note that V h may present other kind of spaces under various situations.

2.1.2 A priori error estimates

Letting u and uh be theose defined above, an important fact in the error analysis of

the Ritz-Galerkin FEM is the following best approximation property:

|u− uh|1,Ω = min
vh∈V h

|u− vh|1,Ω, (2.1.5)
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where |·|1,Ω is the standard H1 semi-norm for functions over domain Ω. Another important

one is the L2-error estimate based on the Aubin-Nitsche trick: (See Theorem 3.2.4 of [15])

‖u− uh‖Ω ≤ |u− uh|1,Ω sup
g∈L2(Ω)\{0}

inf
vh∈V h

|Gg − vh|1,Ω

‖g‖Ω
. (2.1.6)

Let Π1
h be a nodal value interpolation operator that maps a function u ∈ H2(Ω) ∩

H1
0 (Ω) ↪→ C(Ω) to V h, that is

(Π1
hu)(pi) = u(pi) for each vertex pi of Th . (2.1.7)

From (2.1.5), an error estimate based on the interpolation function Π1
hu is given by

|u− uh|1,Ω ≤ |u− Π1
hu|1,Ω ≤ Ch|u|2,Ω ≤ CC ′‖f‖Ω , (2.1.8)

where C is a constant independent of u and h. Also, taking vh = Π1
h(Gg) in (2.1.6), we

have

sup
g∈L2(Ω)\{0}

|Gg − Π1
hGg|1,Ω

‖g‖Ω

≤ sup
g∈L2(Ω)\{0}

Ch
|Gg|2,Ω

‖g‖Ω

≤ CC ′h .

Hence, by adopting (2.1.6) and (2.1.8), we have

‖u− uh‖Ω ≤ CC ′h|u− uh|1,Ω ≤ (CC ′h)2‖f‖Ω . (2.1.9)

From the analysis above, we can see that the boundedness of the constants C and

C ′ ensures a priori error estimates for the FEM solution. However, the values of these

constants are usually very difficult to obtain. The main objective of this dissertation is

to give concrete values or upper bounds for various constants appearing in FEM error

analysis and further to make quantitative error estimation for FEM solutions. As these

constants are closely related to error estimates, we call them ”error constants”.

Before further discussing the error constants, we also recall one kind of a posteriori

estimate for FEM to show the role of the error constants.

2.1.3 A posteriori error estimates

A posteriori error estimation is also feasible and effective in various situations such as

adaptive FEM computation. Here, as a demonstration, we explain a special and rather
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classical a posteriori error estimate method briefly to show the indispensability of the

interpolation function together with the error constants. Detailed analysis can be found

in the subsequent sections.

Let q be an arbitrary vector function taken from

H(div; Ω) := {q ∈ L2(Ω)2| div q ∈ L2(Ω)} . (2.1.10)

Using the Green theorem, we have,

|u− uh|21,Ω = (∇(u− uh),∇(u− uh))Ω = (u− uh,−∆u)Ω − (∇(u− uh),∇uh)Ω

= (u− uh, f)Ω + (∇(u− uh), q −∇uh − q)Ω

= (u− uh, f + div q)Ω + (∇(u− uh), q −∇uh)Ω

≤ ‖u− uh‖Ω · ‖f + div q‖Ω + |u− uh|1,Ω · ‖q −∇uh‖Ω .

Applying the former part of (2.1.9), we have

|u− uh|1,Ω ≤ CC ′h‖f + div q‖Ω + ‖q −∇uh‖Ω . (2.1.11)

The estimate above becomes an a posteriori one if q is specified appropriately. The

most elegant but quite a restrictive choice is based on the hyper-circle method [29], where

q is chosen so that f +div q = 0 and hence the the use of CC ′ becomes unnecessary. More

common and practical approach is to obtain q by post-processing of uh, for example,

by averaging or smoothing ∇uh so as to belong to H(div; Ω). To make this approach

effective, it is necessary that ‖q −∇uh‖Ω = O(h) and preferably ‖f + div q‖Ω = o(h). A

kind of a posteriori L2-error estimate is also obtainable by using (2.1.9),

‖u− uh‖Ω ≤ (CC ′h)2‖f + div q‖Ω + CC ′h‖q −∇uh‖Ω . (2.1.12)

Once again, we observe the importance of the concrete values of the error constants.

In the following section, we will introduce necessary constants and develop methodology

to give sharp estimates.

2.2 Interpolation functions and error constants

We have demonstrated the importance of the interpolation error constants in the error

estimation for the finite element methods. From this section, we will investigate several

8



error constants related to triangular finite elements.

First of all, we give the necessary notations and define the error constants. Let h, α

and θ be positive constants such that

h > 0, 0 < α ≤ 1, (
π

3
≤) cos−1 α

2
≤ θ < π . (2.2.1)

We denote by Tα,θ,h the triangle 4OAB with O(0, 0), A(h, 0), B(αh cos θ, αh sin θ) as

three vertexes. The conditions in (2.2.1) imply that AB is the edge of maximum length,

while OA is the medium edge and OB the shortest one. Notice that the notation h is

mostly used as the largest edge length in standard textbooks such as [15], but our usage

of h as the medium one may be convenient for the present purposes. A point in Tα,θ,h or

over its closure is designated by x = (x1, x2), and three edges e1, e2 and e3 of Tα,θ,h are

defined as

e1 = OA, e2 = OB, e3 = OC .

Thus each triangle can be configured with three parameter α, θ and h by an appropri-

ate congruent transformation. Like the usage in [6], we will use abbreviated notations

Tα,θ = Tα,θ,1, Tα = Tα,π/2 and T = T1 (Fig 2.2).

B(αh cos θ, αh sin θ)

A(h, 0)
O

θ

Tα,θ,h{αh {

h

Figure 2.1: Triangular element Tα,θ,h

Before further considering the constants, let us introduce several function spaces. On

domain Tα,θ,h, we use the popular Hilbert space L2(Tα,θ,h), where the norm is denoted

by ‖ · ‖L2(Tα,θ,h), or ‖ · ‖Tα,θ,h
if there is no fear of confusion. When we need to use the

L2 space and its norm for other domains such as Ω, we will use notations such as L2(Ω)

and ‖ · ‖Ω. The spaces H1(Tα,θ,h) and H2(Tα,θ,h) are respectively the first and the second-

order Sobolev spaces for real square integrable functions over Tα,θ,h [2]. The symbols

9



B(αh cos θ, αh sin θ)

A(h, 0)
O

θ

Tα,θ,h{αh {
h

B(α cos θ, α sin θ)

A(1, 0)
O

θ

Tα,θ = Tα,θ,1{α {

1
B(0, α)

A(1, 0)
O

Tα = Tα, π

2

B(0, 1)

A(1, 0)
O

T = T1

Figure 2.2: Notations for triangles

∂u/∂xi, ∂iu and uxi
will all denote the partial derivative of function u with respect the

variable xi. The standard semi-norms for H1(Tα,θ,h) and H2(Tα,θ,h) are represented by

| · |1 = (
∑2

i=1 ‖∂v/∂xi‖2)1/2 and |v|2 = (
∑2

i,j=1 ‖∂2v/∂xi∂xj‖2)1/2 respectively. Similarly

we also use | · |1,Ω and | · |2,Ω.

Let us define the following closed linear subspaces of H1(Tα,θ,h) or H2(Tα,θ,h) for func-

tions over Tα,θ,h:

V 0
α,θ,h = {v ∈ H1(Tα,θ,h)|

∫

Tα,θ,h

v(x)dx = 0} , (2.2.2)

V i
α,θ,h = {v ∈ H1(Tα,θ,h)|

∫

ei

v(s)ds = 0} (i = 1, 2, 3) , (2.2.3)

V 4
α,θ,h = {v ∈ H2(Tα,θ,h)| v(O) = v(A) = v(B) = 0} , (2.2.4)

where ds is the line element. For other domains like Ω, we will also use spaces such as

H1(Ω) and H2(Ω) later. For the above spaces, we will again use abbreviated notations

V i
α,θ = V i

α,θ,1, V
i
α = V i

α,π/2 and V i = V i
1 (0 ≤ i ≤ 4).

The spaces above are introduced for the purpose of giving error estimate of conforming

P1 FEM. There will appear several other spaces introduced in the next chapter.

In the following, let us consider the usual P0 interpolation operator Π0
α,θ,h and P1 one

Π1
α,θ,h for functions on Tα,θ,h [12, 15].
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Interpolation operators

Averaged interpolation function: For each v ∈ H1(Tα,θ,h) (or even v ∈ L2(Tα,θ,h)),

Π0
α,θ,hv is a constant function well-defined by

(Π0
α,θ,hv)(x) =

∫

Tα,θ,h

v(y)dy

/∫

Tα,θ,h

dy (∀x ∈ Tα,θ,h) . (2.2.5)

Nodal Lagrange interpolation function: For each v ∈ H2(Tα,θ,h), Π1
α,θ,hv is a linear

polynomial function such that

(Π1
α,θ,hv)(x) = v(x) for x = O,A,B. (2.2.6)

To give error estimates for these interpolation operators, it is natural to evaluate

positive constants defined by

Ci(α, θ, h) = sup
v∈V i

α,θ,h
\{0}

‖v‖Tα,θ,h

|v|1,Tα,θ,h

(i = 0, 1, 2, 3), (2.2.7)

C4(α, θ, h) = sup
v∈V 4

α,θ,h
\{0}

|v|1,Tα,θ,h

|v|2,Tα,θ,h

, (2.2.8)

C5(α, θ, h) = sup
v∈V 4

α,θ,h
\{0}

‖v‖Tα,θ,h

|v|2,Tα,θ,h

. (2.2.9)

The existence of these positive constants follows from the Rellich compactness theorem

and the ”sup” here can be actually replaced by ”max”. Due to the properties to become

clear soon, such constants, together with some related ones, are often called interpolation

error constants. We will again use abbreviated notations Ci(α, θ) = Ci(α, θ, 1), Ci(α) =

Ci(α, π/2) and Ci = Ci(1) for 0 ≤ i ≤ 5.

By a simple scale change, we find that Ci(α, θ, h) = hCi(α, θ) (i = 0, 1, 2, 3, 4) and

C5(α, θ, h) = h2C5(α, θ). These relations and constants are used to derive popular inter-

polation error estimates for Πi
α,θ,h (i = 0, 1) applied to functions on Tα,θ,h [15, 30, 12]:

‖v − Π0
α,θ,hv‖ ≤ C0(α, θ)h|v|1, ∀v ∈ H1(Tα,θ,h) , (2.2.10)

|v − Π1
α,θ,hv|1 ≤ C4(α, θ)h|v|2, ∀v ∈ H2(Tα,θ,h) , (2.2.11)

‖v − Π1
α,θ,hv‖1 ≤ C5(α, θ)h|v|2, ∀v ∈ H2(Tα,θ,h) , (2.2.12)

where we have used the facts that v−Π0
α,θ,hv ∈ V 0

α,θ,h for v ∈ H1(Tα,θ,h) and v−Π1
α,θ,hv ∈

V 4
α,θ,h for v ∈ H2(Tα,θ,h).
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Moreover, in the present coordinate system (Figure 2.1), we have, for the partial

derivative ∂1v(= ∂v/∂x1) of v ∈ H2(Tα,θ,h),

‖∂1(v − Π1
α,θ,hv)‖ ≤ C1(α, θ)h |∂1v|1 , (2.2.13)

since ∂1(v − Π1
α,θ,h v) ∈ V 1

α,θ,h. On the other hand, we can give an interpolation estimate

in terms of C2(α, θ):

‖∂(v − Π1
α,θ,hv)/∂β‖ ≤ C2(α, θ)h |∂v/∂β|1 , (2.2.14)

where ∂(v − Π1
α,θ,h v)/∂β denotes the directional derivative of v−Π1

α,θ,hv in the direction

β := (cos θ, sin θ), that is, ∇(v − Π1
α,θ,hv) · (cos β, sin β).

The above two estimates (2.2.13) and (2.2.14) are in a sense sharper than (2.2.11) as

noted in [12].

Remark 2.2.1. We can also consider anisotropic error estimates such as

|v − Π1
α,θ,hv|1,Tα,θ,h

≤ h

(
2∑

i,j=1

cij‖∂ijv‖2
Tα,θ,h

)1/2

, (2.2.15)

where the constants cij’s (1 ≤ i, j ≤ 2) can be different from each other to give better

error estimates. Notice that we are here considering the special cases where cij = C4(α, θ)

for all i and j. Such kind of error estimates can be used to control anisotropic elements

in adaptive FEM [20, 18]. However, we will not include such topics here.

Remark 2.2.2. The constants C1(1, π/2, 1) = C2(1, π/2, 1) are first introduced by I.Babuška

and A.K.Aziz [6] to give an upper bound for C4(1, π/2, 1), that is C4(1, π/2, 1) ≤ C1(1, π/2, 1) =

C2(1, π/2, 1). In the following sections, we will also show that C4(α) ≤ max{C1(α), C2(α)}
for α > 0. Thus the estimates for C1(α) and C2(α) can be used to give upper bound for

C4(α). Relations between C4(α, θ) and Ci(α, θ)(i=1,2,3) will be discussed in Section 2.4.2.

One of the merits of considering Ci(α, θ) (i = 1, 2, 3) is that the estimates for these con-

stants are much easier than the one for C4(α, θ).

Thus we can give quantitative interpolation estimates, provided that we succeed in

evaluating or bounding the constant Ci(α, θ)’s explicitly. So we will try to bound these

constants by fairly simple functions of α and θ. Notice here that each of such constants
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can be characterized by minimization of a kind of Rayleigh quotient. Then it is equiv-

alent to finding the minimum eigenvalue of a certain eigenvalue problem expressed by a

weak formulation, which is further expressed by a partial differential equation with some

auxiliary conditions.

More specifically, we can characterize the constants Ci(α, θ)’s by minimization of

Rayleigh’s quotients R
(i)
α,θ’s:

C−2
i (α, θ) = inf

v∈V i
α,θ

\{0}
R

(i)
α,θ(v); R

(i)
α,θ(v) =

|v|21,Tα,θ

‖v‖2
Tα,θ

(i = 0, 1, 2, 3) , (2.2.16)

C−2
4 (α, θ) = inf

v∈V 4

α,θ
\{0}

R
(4)
α,θ(v); R

(4)
α,θ(v) =

|v|22,Tα,θ

|v|21,Tα,θ

, (2.2.17)

C−2
5 (α, θ) = inf

v∈V 4

α,θ
\{0}

R
(5)
α,θ(v); R

(5)
α,θ(v) =

|v|22,Tα,θ

‖v‖2
Tα,θ

, (2.2.18)

where all the notations and functions are for Tα,θ. Here we also introduce several quantities

λi(α, θ)’s by

λi(α, θ) := C−2
i (α, θ) (0 ≤ i ≤ 5) , (2.2.19)

which will often appear in the forms of eigenvalue problems (see below).

By the standard compactness arguments, each infimum above is actually a minimum

and is the smallest eigenvalue of a certain eigenvalue problem. For example, the eigenvalue

problem associated with C0(α, θ) is to find λ ∈ R and u ∈ V 0
α,θ \ {0} that satisfy

(∇u,∇v)Tα,θ
= λ(u, v)Tα,θ

, ∀v ∈ V 0
α,θ. (2.2.20)

Here (·, ·)Tα,θ
denotes the inner products of both L2(Tα,θ) and L2(Tα,θ)

2. The present eigen-

value problem is also expressed by a partial differential equation with a linear constraint

for V 0
α,θ and a boundary condition [36, 39].

−4u = λu in Tα,θ,

∫

Tα,θ

u(x)dx = 0,
∂u

∂n
= 0 on ∂Tα,θ , (2.2.21)

where ∂
∂n

denotes the outward normal derivative to the boundary ∂Tα,θ. The above

boundary condition is the homogeneous Neumann one, and the desired value C0(α, θ)
−2

is just the second eigenvalue for the same PDE problem without the linear constraint.

For C1(α, θ), it is characterized in essentially the same fashion as (2.2.20), if the

associated space V 0
α,θ is replaced with V 1

α,θ: find λ ∈ R and u ∈ V 1
α,θ \ {0} that satisfy

(∇u,∇v)Tα,θ
= λ(u, v)Tα,θ

, ∀v ∈ V 1
α,θ. (2.2.22)
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On the other hand, the equations corresponding to (2.2.21) become [36, 39]:

−4u = λu in Tα,θ,

∫ 1

0

(x1, 0)dx1 = 0,
∂u

∂n
=

{
0 on edges OB and AB,
c on edge OA,

(2.2.23)

where c denotes an unknown constant to be decided simultaneously with u and λ.

The other constants are characterized similarly. For example, the eigenvalue problem

associated to C4(α, θ) is to find λ ∈ R and u ∈ V 4
α,θ \ {0} that satisfy

2∑

i,j=1

(∂iju, ∂ijv)Tα,θ
= λ(∇u,∇v)Tα,θ

, ∀v ∈ V 4
α,θ . (2.2.24)

But the partial differential equation related to the above and also that to C5(α, θ) are

the ones of fourth order with special linear constraints and boundary conditions, and are

more difficult to deal with than the second order equations such as in (2.2.21) and (2.2.23),

cf.[4, 44]. Since Tα,θ is a triangle, it is difficult to solve such eigenvalue problems explicitly

even in the case of second order equations, except in some rare cases to be shown later.

2.3 Dependence of constants on geometric parame-

ters

The classical method to estimate the interpolation error is to consider the interpolation

on a reference element, e.g., the isosceles right triangle, and then introduce appropriate

affine coordinate transformations between the given elements and the reference one (cf.

Chapter 3 of [15]), where only the convergence orders have been usually assured with

many unknown constants. Here we will follow essentially the same technique as above to

consider the dependence of the constants on geometric parameters, and then give concrete

estimates for Ci(α, θ)’s by using the ones on the reference triangular element.

2.3.1 Relation between Ci(α)’s (i = 1, 2) and C4(α)

In this section, we simply extend the result of [6] to show the role of Ci(α) (i = 1, 2, 3) in

estimating C4(α).

Lemma 2.3.1. For α > 0, it holds that

C4(α) ≤ max{C1(α), C2(α)} . (2.3.1)

14



Proof. From the definition,

C4(α)−2 = inf
v∈V 4

α \{0}

|v|22
|v|21

= inf
v∈V 4

α \{0}

|∂v/∂x1|21 + |∂v/∂x2|21
‖∂v/∂x1‖2 + ‖∂v/∂x2‖2

.

We can see that ∂v/∂xi ∈ V i
α (i = 1, 2) for v ∈ V 4

α , so that

|∂v/∂xi|1,Tα
≥ Ci(α)−1‖∂v/∂xi‖Tα

(i = 1, 2) .

Then,

C4(α)−2 ≥ inf
v∈V 4

α \{0}

C1(α)−2‖∂v/∂x1‖2 + C2(α)−2‖∂v/∂x2‖2

‖∂v/∂x1‖2 + ‖∂v/∂x2‖2

≥ min{C1(α)−2, C2(α)−2} .

Now we obtain the desired result.

As shown in the above proof, neglecting the curl-free condition for v ∈ V 4
α , that is,

∂1(∂2v) − ∂2(∂1v) = 0 required for v ∈ V 4
α , leads to an upper bound for C4(α). As we

will see in the later computational results in Figure 2.3, the constants C1(α) and C2(α)

give reasonable upper bound for C4(α). Moreover, the orders of derivative in the PDEs

corresponding to C1(α) and C2(α) are lower than that for C4(α), which fact makes C1(α)

and C2(α) easier to deal with. Therefore, we will pay more efforts on these two constants

instead of the primary one C4(α) [36, 39].

The method used in Lemma 2.3.1 can also be extended to general cases to give estimate

for C4(α, θ) by utilizing Ci(α, θ) (i = 1, 2, 3), cf. Section 2.4.2.

2.3.2 Dependence of constants on α

Monotonicity of constants Ci(α) in α

In the case of α = π/2, we can easily prove the monotonicity of Ci(α), (0 ≤ i ≤ 5; i 6= 4)

, as will be shown below. However, it appears to be difficult to show the monotonicity of

C4(α), although our numerical results suggest that it holds even in this case. In general

case where θ 6= π
2
, it would be much more difficult or even impossible to show the mono-

tonicity of Ci(α, θ) even when one of α and θ is fixed.
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Before going into further discussion, let us introduce new Rayleigh quotients R̂
(i)
α ’s for

u ∈ H1(T ) or u ∈ H2(T ), where T = T1,π/2,1:

R̂(i)
α (u) =

‖∂1u‖2
T + α−2‖∂2u‖2

T

‖u‖2
T

for i = 0, 1, 2, 3, (2.3.2)

R̂(4)
α (u) =

‖∂11u‖2
T + 2α−2‖∂12u‖2

T + α−4‖∂22u‖2
T

‖∂1u‖2
T + α−2‖∂2u‖2

T

for i = 4 , (2.3.3)

R̂(5)
α (u) =

‖∂11u‖2
T + 2α−2‖∂12u‖ + α−4‖∂22u‖2

T

‖u‖2
T

for i = 5 . (2.3.4)

Lemma 2.3.2. For α > 0, Ci(α)’s (i = 0, 1, 2, 3, 5; i 6= 4) are strictly monotonically

increasing with respect to α.

Proof. We only show the proof for C1(α), while the other ones can be done in analogous

ways. Let us consider the transformation between x = (x1, x2) ∈ Tα and ξ = (ξ1, ξ2) ∈ T

by ξ1 = x1, ξ2 = x2/α and let û(ξ1, ξ2) := u(x1, x2) for the corresponding ξ and x. Using

the Rayleigh quotient in equation (2.3.2), we have R̂
(1)
α (û) = R

(1)
α (u). Also, notice that

R̂
(1)
α (û) is strictly monotonically decreasing in α for fixed û if ∂ξ2 û 6= 0.

As R
(1)
α (u) = R̂

(1)
α (û) and from the definition of λ1(α) in (2.2.19), we can see that

λ1(α) = inf
v̂∈V 1\{0}

R̂(1)
α (v̂) , (2.3.5)

where ”inf” is actually ”min”. For each α, let û
(1)
α ∈ V 1 be the minimizing function

corresponding to λ1(α). We can see that ∂ξ2 û
(1)
α 6= 0 although we omit the details (cf.

Sec.2.5). Hence, for given 0 < α1 < α2, we have

λ1(α1) = R̂α1
(ûα1

) > R̂α2
(ûα1

) ≥ R̂α2
(ûα2

) = λ1(α2) , (2.3.6)

where the second inequality follows from the definition of minimizing function ûα2
. Now,

we have proved that C1(α) = λ1(α)−1/2 is strictly monotonically increasing as α increases,

and the proof is completed.

Remark 2.3.1. Summarizing the results in Lemma 2.3.1 and 2.3.2, we have

C4(α) ≤ max{C1(α), C2(α)} ≤ C1 = C2 for α ≤ 1,

which fact makes it possible to give an upper bound for C4(α), provided that the values of

C1(α) and C2(α), or even the single value of C1 = C2, are available.
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Continuity of constants in α

For all α ∈ (0,∞), we will show that Ci(α)’s (0 ≤ i ≤ 5) are continuous with respect

to α. The proof for each constant adopts essentially the same technique.

Lemma 2.3.3. For α > 0, Ci(α)’s (0 ≤ i ≤ 5) are continuous with respect to α.

Proof. We describe the proof only for C4(α), while it is easier to prove in other cases since

the associated Ci(α)’s are monotone. Let us recall the Rayleigh quotient in equation(2.3.3),

and the constant λ4(α) introduced by (2.2.19):

λ4(α) :=
1

C4(α)2
= inf

v∈V 4(T )\{0}
R̂(4)

α (v) . (2.3.7)

Within the present proof, we will denote the denominator of R̂
(4)
α (v) by bα(v) and the

numerator by aα(v), that is, R̂
(4)
α (v) = aα(v)/bα(v). Let vα ∈ V 4 \ {0} be one of the

minimization function corresponding to λ4(α), for which we assume that bα(vα) = 1.

For a fixed α > 0, let Iα := [α − ε, α + ε] ⊂ (0,∞) for sufficiently small ε > 0. As

we can see that λ4(α) is uniformly bounded for β ∈ Iα, both λ4 := lim supβ→α λ4(β) and

λ4 := lim infβ→αλ4(β) exist.

To show the continuity of λ4(β) at β = α, we need to prove that

λ4(α) = lim infβ→αλ4(β) = lim supβ→αλ4(β) . (2.3.8)

In fact, as λ4 ≤ λ4, it is sufficient to show

(lim supβ→αλ4(β) =) λ4 ≤ λ4(α) ≤ λ4 (= lim infβ→αλ4(β)) . (2.3.9)

From the definitions of lim inf and lim sup, there exist a sequence {βi}∞i=1 such that βi → α

and λ4(βi) → λ4, and also another one {β̂i}∞i=1 such that β̂i → α and λ4(β̂i) → λ4 as

i→ ∞.

Firstly, we will show that

λ4 ≤ λ4(α) . (2.3.10)

which is true by noticing the relation λ4(β̂i) ≤ R
(4)

β̂i
(vα), and the fact that Rβ̂i

(vα) →
Rα(vα) and λ4(β̂i) → λ4 as i→ ∞.

Secondly, we will show

λ4(α) ≤ λ4 , (2.3.11)

for which we give the proof as below.
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1) ‖vβ‖H2(T ) are uniformly bounded for all β ∈ Iα:

Firstly, there exist positive constants ki(Iα) (i = 1, 2, 3, 4), such that

k1(Iα)|v|22,T ≤ aα(v) ≤ k2(Iα)|v|22,T ,

k3(Iα)|v|21,T ≤ bα(v) ≤ k4(Iα)|v|21,T .

Considering the boundedness of {λ4(β)} on Iα and the assumption bα(vβ) = 1, we

find that {aβ(vβ)} and {bβ(vβ)} are uniformly bounded on Iα, so that

{|vβ|T} are uniformly bounded. Secondly, noting that ‖u‖T ≤ C5|u|2,T for u ∈ V 4

(c.f. 2.2.7), we have that {‖vβ‖T} is uniformly bounded. Therefore, {‖vβ‖2,T} is

uniformly bounded for all vβ with β ∈ Iα.

2) Since {vβi
} are uniformly bounded in H2(T ), we can apply the compactness theorem

in the Sobolev space (Rellich’s theorem) to show that there exist v0(6= 0) ∈ H2(T )

and a sub-sequence of {vβi
}, still using the same notation, such that vβi

⇀ v0 in

H2(T ) and vβi
→ v0 in H1(T ) as i → ∞. Moreover, we have

∂2vβi

∂xk∂xj
⇀ ∂2v0

∂xk∂xj

(1 ≤ k, j ≤ 2) in L2(T ) and
∂vβi

∂xj
→ ∂v0

∂xj
(j = 1, 2) in L2(T ). Here, ”→” and ”⇀”

respectively denote the strong and weak convergence in normed spaces.

3) limi→∞ aβi
(vβi

) ≥ aα(vβi
) and limi→∞ bβi

(vβi
) = bα(v0) = 1:

The latter equality is easier to show. For the former inequality, we use the weakly

lower semi-continuity of Hilbertian norms: for {wi}∞i=1 such that wi ⇀ w0 in L2(T ),

we have ‖w0‖L2(T ) ≤ lim infi→∞ ‖wi‖T . Then

lim
i→∞

aβi
(vβi

) = lim
i→∞

{
‖∂

2vβi

∂x2
1

‖2
T +

2

βi
2‖

∂2vβi

∂x1∂x2
‖2

T +
1

βi
4‖
∂2vβi

∂x2
2

‖2
T

}

≥ lim inf
i→∞

‖∂
2vβi

∂x2
1

‖2
T + lim inf

i→∞
2

βi
2‖

∂2vβi

∂x1∂x2

‖2
T

+ lim inf
i→∞

1

βi
4‖
∂2vβi

∂x2
2

‖2
T

≥ ‖∂
2v0

∂x2
1

‖2
T +

2

α2
‖ ∂2v0

∂x1∂x2
‖2

T +
1

α4
‖∂

2v0

∂x2
2

‖2
T

= aα(v0) .

Thus we have λ4(α) = R̂
(4)
α (vα) ≤ R̂

(4)
α (v0) ≤ limi→∞R

(4)
βi

(vβi
) = λ4.
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Now, both (2.3.10) and (2.3.11) are proved, so that (2.3.8) holds. Therefore the

continuity of C4(α) is assured.

Remark: Here we only consider the continuity of constants on parameter α in the case

where θ = π/2. Actually, by extending the technique used here, we can prove that all

these constants are continuous in two parameters α and θ for α ∈ (0, 1] and θ ∈ [ π
3
, π).

We summarize the results above as follows.

Theorem 2.3.1. In the case of h = 1 and θ = π/2, Ci(α)’s (0 ≤ i ≤ 5) are continuous

and positive-valued functions of α ∈ (0,+∞) (α > 1 is also considered here). Except for

i = 4, they are strictly monotonically increasing with respect to α. In particular,

Ci(α) ≤ Ci, ∀ α ∈ (0, 1] ( 0 ≤ i ≤ 5; i 6= 4) . (2.3.12)

Furthermore, C4(α) has the property

C4(α) ≤ max{C1(α), C2(α)} ≤ C1 = C2 for α ∈ (0, 1] . (2.3.13)

Here we see that each Ci(α) (0 ≤ i ≤ 5; i 6= 4) is bounded from above by Ci, and

C4(α) is so by C1 = C2. Fortunately, since the value of C0(= 1/π) and C1 = C2 will be

available (to be shown in the next chapter), we can give rough but correct upper bounds

for Ci(α)′s (i = 0, 1, 2, 3).

In Figure 2.3, we show the numerical results for C1(α), C2(α) and C4(α) to check

the validity of the present theorem. As may be seen from the figure, C4(α) is actually

bounded from above by max{C1(α), C2(α)} for every α ≤ 1. Moreover their monotonicity

is seen to hold, although such a property is not yet proved for C4(α). It is also interesting

that C4 is numerically close to C1 = C2 at α = 1.

2.3.3 Dependence of constants on θ

Since various properties of error constants in the case of α = π/2 become clearer now,

we now try to estimate Ci(α, θ) by Ci(α) for each fixed α. There are also some other ways

to estimate Ci(α, θ)’s by considering the coordinate transformation between, for example,

Tα,θ and T1,π/2, which will be studied in the next section.
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Figure 2.3: Numerical results for C1(α), C2(α) and C4(α)

For fixed value of parameter α, we can estimate Ci(α, θ) by Ci(α) as follows.

Theorem 2.3.2. For each α ∈ (0, 1] and θ ∈ [π/3, π), the following relations hold:

ψi(θ)Ci(α) ≤ Ci(α, θ) ≤ φi(θ)Ci(α) (0 ≤ i ≤ 5) . (2.3.14)

Here,

φi(θ) =
√

1 + | cos θ| (i = 0, 1, 2, 3), φ4(θ) =
1 + | cos θ|√
1 − | cos θ|

, φ5(θ) = 1 + | cos θ| ; (2.3.15)

ψi(θ) =
√

1 − | cos θ| (i = 0, 1, 2, 3), ψ4(θ) =
1 − | cos θ|√
1 + | cos θ|

, ψ5(θ) = 1− | cos θ| . (2.3.16)

Proof. Given the triangle Tα,θ, we define the affine transformation between x = (x1, x2) ∈
Tα,θ and ξ = (ξ1, ξ2) ∈ Tα by (cf. Figure 2.4):

ξ1 = x1 − cot θx2, ξ2 =
x2

sin θ
. (2.3.17)

Further, define new function û(ξ1, ξ2) := u(x1, x2) over Tα. The transformation above

in the matrix form is given by
(
ξ1
ξ2

)
= T

(
x1

x2

)
with T = (ti,j)i,j=1,2 :=

(
1 − cot θ
0 1/sin θ

)
.
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B(α cos θ, α sin θ)

A(1, 0)
O

θ

Tα,θ and Tα,π/2

B′(0, α)

Figure 2.4: Transformation between Tα,θ and Tα,π/2

To investigate the relation between the derivatives of the two functions û(ξ1, ξ2) and

u(x1, x2), we are required to consider the eigenvalue problem of the matrices related to

the transformation (2.3.17). Firstly we give the Jacobian of this transformation,
∣∣∣∣
∂(x1, x2)

∂(ξ1, ξ2)

∣∣∣∣ = sin θ . (2.3.18)

The derivatives of u and û are related with each other as
(
ux1

ux2

)
= T t

(
ûξ1

ûξ2

)
,

(
ux1x1

ux1x2

ux2x1
ux2x2

)
= T t

(
ûξ1ξ1 ûξ1ξ2

ûξ2ξ1 ûξ2ξ2

)
T , (2.3.19)

where we use the notations such as uxi
to denote the partial derivative ∂u/∂xi and denote

by T t the transpose of the matrix T .

Noticing that semi-norm |u|Tα,θ
can be presented by |u|22,Tα,θ

= ‖βtβ‖Tα,θ
where β is a

vector function defined by β = (ux1x1
, ux2,x2

,
√

2ux1x2
). we consider the following equations




ux1x1

ux2x2√
2 ux1x2


 =




t211 t221
√

2 t11t21
t212 t222

√
2 t12t22√

2 t11t12
√

2 t21t22 t11t22 + t12t21






ûξ1ξ1

ûξ2ξ2√
2 ûξ1ξ2


 := Lt




ûξ1ξ1

ûξ2ξ2√
2 ûξ1ξ2


 .

Hence,
{
λmin(TT

t)(û2
ξ1

+ û2
ξ2

) ≤ (u2
x1

+ u2
x2

) ≤ λmax(TT
t)(û2

ξ1
+ û2

ξ2
) ,

λmin(LL
t)
∑

1≤i,j≤2 û
2
ξiξj

≤∑1≤i,j≤2 û
2
xixj

≤ λmax(LL
t)
∑

1≤i,j≤2 û
2
ξiξj

,

where λmin and λmax denote respectively the minimum and maximum eigenvalues for the

corresponding matrices:

TT t =
1

sin2 θ

(
1 − cos θ

− cos θ 1

)
,

LLt =
1

sin4 θ




1 cos2 θ −
√

2 cos2 θ

cos2 θ 1 −
√

2 cos θ

−
√

2 cos2 θ −
√

2 cos θ 1 + cos2 θ


 .
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As we can find that the eigenvalues of TT t are (1± | cos θ|)/ sin2 θ , and those of LTL are

(1 − cos2 θ)−1 and (1 ± | cos θ|)−2, we have





(1 − | cos θ|)(û2
ξ1

+ û2
ξ2

)/sin2 θ ≤ (u2
x1

+ u2
x2

) ≤ (1 + | cos θ|)(û2
ξ1

+ û2
ξ2

)/sin2 θ ,

∑
1≤i,j≤2(ûξiξj

)2/(1 + | cos θ|)2 ≤∑1≤i,j≤2(uxixj
)2 ≤∑1≤i,j≤2(ûξiξj

)2/(1 − | cos θ|)2 .

Adopting the Jacobian in (2.3.18) and the inequalities above, we have

(1 − | cos θ|)/ sin θ

sin θ/(1 − | cos θ|)2
·
|û|21,Tα

|û|22,Tα

≤
|u|21,Tα,θ

|u|22,Tα,θ

≤ (1 + | cos θ|)/ sin θ

sin θ/(1 + | cos θ|)2
·
|û|21,Tα

|û|22,Tα

,

which finally leads to

1 − | cos θ|√
1 + | cos θ|

C4(α) ≤ C4(α, θ) ≤
1 + | cos θ|√
1 − | cos θ|

C4(α) .

Similarly, we can obtain the estimates for the other constants.

Remark 2.3.2. The results for the dependence of constants on θ are consistent with the

well known maximum interior angle condition. That is, given a triangular element with

bounded diameter, the smallest interior angle can tend to 0 while the Π1
α,θ,h interpolation

error in H1 norm is bounded if the maximum interior angle is bounded above from π.

Babuška and Aziz proposed this condition in [6] by considering the transformation between

Tα,θ and Tα sin θ,π/2 (See Figure 2.5 ).

B(α cos θ, α sin θ)

A(1, 0)
O

θ

Tα,θ and Tα sin θ,π/2

B′(0, α sin θ)

Figure 2.5: Transformation between Tα,θ and Tα sin θ,π/2

22



Remark 2.3.3. If the values of C0, C1 = C2 and C5 are available, we can then give

quantitative error estimates for the interpolation operators Π0
α,θ,h and Π1

α,θ,h:

Π0
α,θ,h : ‖v − Π0

α,θ,hv‖Tα,θ,h
≤ C0φ0(θ)h |v|1,Tα,θ,h

; ∀v ∈ H1(Tα,θ,h),

Π1
α,θ,h : |v − Π1

α,θ,hv|1,Tα,θ,h
≤ C1φ4(θ)h |v|2,Tα,θ,h

; ∀v∈H2(Tα,θ,h),

‖v − Π1
α,θ,hv‖Tα,θ,h

≤ C5φ5(θ)h
2 |v|2,Tα,θ,h

; ∀v∈H2(Tα,θ,h).

(2.3.20)

In the following sections, we will determine the concrete values of C0 and C1 = C2,

while for C5, we had a known rough upper bound as C5 ≤ 0.361 [21].

2.3.4 Natterer’s estimate for C4(α, θ)

To consider the dependence of the constants on geometric parameters, an intuitive

idea is to consider the affine transformation between Tα,θ and T1,π/2. Such a method was

in fact applied to give estimate for C4(α, θ) by F. Natterer [40]. Here we will apply this

method to all the constants mentioned above, where the result of Natterer, expressed in

our notations, is also included as a special case.

B(α cos θ, α sin θ)

A(1, 0)
O

θ

Tα,θ and T1,π/2

B′(0, 1)

Figure 2.6: Transformation between Tα,θ and T1,π/2

To this end, let us introduce the following simple affine transformation ξ = Φα,θ(x)

between x = (x1, x2) ∈ Tα,θ and η = {ξ1, ξ2} ∈ T = T1,π/2 (See Fig 2.6):

{
ξ1 = x1 − x2 cot θ
ξ2 = x2 /(α sin θ)

or

{
x1 = ξ1 + ξ2 α cos θ
x2 = ξ2 α sin θ

(2.3.21)

In an analogous way as in the proof of Theorem 2.3.2, we can deduce the estimates as

follows. For detailed proof, refer to Theorem 1 of [34].
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Theorem 2.3.3. For α ∈ (0,+∞) and θ ∈ (0, π), Ci(α, θ)’s are bounded as

ψi(α, θ)Ci ≤ Ci(α, θ) ≤ φi(α, θ)Ci (0 ≤ i ≤ 5) , (2.3.22)

where Ci = Ci(1,
π
2
) (0 ≤ i ≤ 5),

ψi(α, θ) =

√
ν−(α, θ)

2
(0 ≤ i ≤ 3), ψ4(α, θ) =

ν−(α, θ)√
2ν+(α, θ)

, ψ5(α, θ) =
ν−(α, θ)

2
, (2.3.23)

φi(α, θ) =

√
ν+(α, θ)

2
(0 ≤ i ≤ 3), φ4(α, θ) =

ν+(α, θ)√
2ν−(α, θ)

, φ5(α, θ) =
ν+(α, θ)

2
, (2.3.24)

with

ν− = 1 + α2 −
√

1 + 2α2 cos 2θ + α4, ν+ = 1 + α2 +
√

1 + 2α2 cos 2θ + α4. (2.3.25)

It should be noticed that the upper bound for C4(α, θ) above is just the same one as

Natterer’s result [40], although the notation here is different from his.

Remark 2.3.4. We can see that, except for i = 4, the upper bounds given for the constants

are uniformly bounded as may be seen in Theorem 2.3.3. On the other hand, the upper

bound for C4(α, θ) is not so, which will lead to the minimum angle condition [15]: the

minimum angle of Tα,θ is bounded above from below by a certain positive constant. This

may be seen by using the identity ν−(α, θ)ν+(α, θ) = 4α2 sin2 θ and rewriting the upper

bound inequality as

C4(α, θ) ≤
C4

α sin θ

(
ν+(α, θ)

2

) 3

2

. (2.3.26)

Namely, we can see, for each fixed θ ∈ (0, π), the right hand side diverges to +∞ as

α → +0 or the minimum angle of the triangle tends to +0, which does not reflect the

essential maximum angle condition. Hence, the above estimate for C4(α, θ) is weaker than

the one in (3.2.15).

2.4 Estimation of the error constants

2.4.1 Exact value determination of particular constants

Up to now, we have analyzed the dependence of the constants on the geometric pa-

rameters. Here we will further consider determination of the exact values of the constants,
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which provides usually very difficult problems to solve. However, for several constants, we

can use the symmetry method to give the concrete values of the constants in the case T1,π/2.

Firstly, we summarize the results to be proved in this section.

Theorem 2.4.1. As for the constants Ci = Ci(1, π/2)’s (0 ≤ i ≤ 3), we have that

1) C0 = 1/π.

2) C1 and C2 satisfy C1 = C2 and are given as the maximum positive solution of the

transcendental equation for µ:
1

µ
+ tan

1

µ
= 0 . (2.4.1)

The concrete value of C1 can be obtained numerically with verification. For example, we

have the estimation as

0.49282 < C1 < 0.49293 . (2.4.2)

3) C3 = C1/
√

2 and 0.34847 < C3 < 0.34856 .

Remark 2.4.1. Simple numerical algorithm without verification, such as the Newton

method, gives C1 = 0.49291245 · · · and C3 = 0.34854173 · · · . The present transcendental

equation can be commonly seen in vibration analysis of strings with special boundary con-

ditions [43]. The constant C1 plays an important role in various situations and is called

the Babuška-Aziz constant in [27, 28].

Remark 2.4.2. At present, C1(= C2) is a nice upper bound of C4 as we will see in

Sections 2.4.2. Numerically C4 ≈ 0.489 as was reported in [4, 45, 47]. As for C5,

estimate C5 < 0.361 is a correct but probably rough one given in [21], while an exact

lower bound estimation is C5 ≥ [(15 +
√

193)/1440]1/2 = 0.1416 · · · , which is derived by

the Ritz-Galerkin method using x1 + x2 − x2
1 − x2

2 and x1x2 as the basis of the trial space

employed in [36]. Our own numerical computations suggest that C5 ≈ 0.168.

In the following, we will first demonstrate the method of symmetry by determining

the value of C0, which is actually already known, cf.[37]. Then, we show the proof for

other constants.

Determination of C0
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As explained in the preview section, λ0 = C−2
0 is the minimum eigenvalue of the

following eigenvalue problem: Find λ > 0 and u ∈ V 0 \ {0} such that

(∇u,∇v) = λ(u, v), ∀v ∈ V 0 . (2.4.3)

Within the following proof, instead of the notation (x1, x2), we will denote a point in

2-dimensional domains by (x, y). Let us modify the problem above to be the one over

extended domain Ω = (0, 1)2, a unit square. For each u in V 0, we can define an extended

function û over Ω by reflection along x + y = 1, that is,

û(x, y) =

{
u(x, y) if (x, y) ∈ T,
u(1 − y, 1 − x) if (x, y) ∈ Ω \ T ,

(2.4.4)

where T is the original triangle domain already defined. We should be aware that û also

belongs to H1(Ω).

Define also a space V̂ 0 by

V̂ 0 = {v̂ ∈ H1(Ω)|
∫

Ω

v̂(x, y)dxdy = 0} , (2.4.5)

then V̂ 0 can be expressed as a direct sum:

V̂ 0 = V̂ 0
s ⊕ V̂ 0

a ,

where
{
V̂ 0

s = the set of functions in V̂ 0 that are symmetric with respect to x + y = 1 ,

V̂ 0
a = the set of functions in V̂ 0 that are antisymmetric with respect to x+ y = 1 .

Moreover, V̂ 0
s and V̂ 0

a are orthogonal to each other in both L2(Ω) and H1(Ω). As a result,

V̂s and V̂a are orthogonal with respect to the bi-linear forms (∇·,∇·)Ω. We can see the

extension of eigenfunction of eigenvalue problem in (2.4.3) is also the one of the eigenvalue

problem: Find λ > 0 and û ∈ V̂ 0 \ {0} such that

(∇û,∇v̂) = λ(û, v̂), ∀v̂ ∈ V̂ 0. (2.4.6)

On the other hand, the restriction of a symmetric eigenfunction û is also the one of

(2.4.3). Therefore, it is sufficient to consider only the eigenvalue problem of (2.4.6).
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As is well known, a complete system of functions for H1(Ω) is given by the totality of

eigenfunctions of (2.4.6) with V̂ 0 replaced with the whole H1(Ω):

ϕm,n(x, y) = cosmπx cosnπy (m,n ≥ 0) .

Since we are interested in symmetric eigenfunctions only, we should make a complete

system of symmetric functions in H1(Ω) from the above: for m ≥ n;m,n = 0, 1, 2, 3, · · · ,

ϕm,n(x, y) = cosmπx cos nπy + cosmπ(1 − y) cosnπ(1 − x) .

The functions above are orthogonal in L2(Ω), and also orthogonal with respect to the

bi-linear form (∇·,∇·)Ω (and in H1(Ω)). A fact to be pointed out is that, except for

ϕ0,0 ≡ 2, all ϕm,n’s for m ≥ n belong to V̂ 0
s and are eigenfunctions of (2.4.6). Thus the

desired eigenvalue λ0 is π2, which is just the one associated to ϕ1,0. Hence, we obtain

C0 = 1/
√
λ0 = 1/π.

Determination of C1 = C2

Recall the corresponding eigenvalue problem for λ1 = C−2
1 in the variational form:

find u ∈ V 1 \ {0} and λ > 0 such that

(∇u,∇v)T = λ(u, v)T ∀v ∈ V 1 . (2.4.7)

By adopting similar techniques used for C0, we prove the second part of Theorem 2.4.1

in 5 steps:

Proof. 1) In an analogous way, we consider the extended domain Ω = (0, 1)2 and introduce

a new space V̂ 1 on Ω = (0, 1)2 by

V̂ 1(Ω) = {v ∈ H1(Ω)|
∫ 1

0

v(x, 0)dx =

∫ 1

0

v(1, y)dy = 0} . (2.4.8)

In the same way as in (2.4.5), we decompose V̂ 1 into V̂ 1 = V̂ 1
a ⊕ V̂ 1

s , where V̂ 1
s is the

subspace of symmetric functions and V̂ 1
a the one of antisymmetric functions. As before,

V̂ 1
s and V̂ 1

a are orthogonal to each other with respect to the inner products of both L2(Ω)

and H1(Ω).
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Let {λ, u} ∈ R × V 1 \ {0} be one of eigenpairs of (2.4.7), and define the symmetric

extension û over Ω by reflection with respect to x+ y = 1, c.f. (2.4.4). Then {λ, û} is an

eigenpair of the eigenvalue problem over Ω: Find λ > 0 and û ∈ V̂ 1(Ω) \ {0} such that

(∇û,∇v̂) = λ(û, v̂), ∀v̂ ∈ V̂ 1(Ω) . (2.4.9)

Conversely, suppose û is one of symmetric eigenfunctions for problem (2.4.9), then the

restriction of û to T is the also the one for (2.4.7). Consequently, for the present purposes,

it suffices to deal with the eigenvalue problem in V 1
s (Ω): Find λ > 0 and û ∈ V̂ 1

s (Ω) \ {0}
such that

(∇û,∇v̂) = λ(û, v̂), ∀v̂ ∈ V̂ 1
s (Ω) . (2.4.10)

2) We use the complete system of functions {ψm,n} (m ≥ n;m,n = 0, 1, 2, ...) defined by

ψm,n(x, y) := cosmπx cos nπy + (−1)m+n cos nπx cosmπy,m ≥ n ≥ 0 .

A function v̂ ∈ V̂ 1
s (Ω) expressed by

v̂ =

∞∑

m≥n≥0

am,nψm,n ( am,n ∈ R )

must satisfy

∫ 1

0

v̂(x, 0)dx =

∫ 1

0

∑

m,n≥0

am,nψm,n(x, 0)dx = 0 and

∫

Ω

(|v̂|2 + |Dv̂|2)dxdy <∞ .

Hence,

2a0,0 +

∞∑

m=1

(−1)mam,0 = 0 and

∞∑

m≥n≥0

(1 +m2 + n2)a2
m,n <∞ .

We can show the sum of the series
∑∞

m=1(−1)mam,0 is absolutely convergent under the

condition imposed above on the coefficients. Eliminating a0,0 by the above equation, every

v̂ ∈ V̂ 1
s is expressed by v̂ =

∑∞
m=1 am,0[ψm,0 − (−1)m] +

∑∞
m≥n≥1 am,nψm,n . Clearly, ψm,n’s

for m ≥ n ≥ 1 are eigenfunctions of (2.4.9) with completely homogeneous Neumann’s

boundary condition, and the minimum of the associated eigenvalues is 2π2.

3) LetW1 be the closure of linear combinations of ψm,0−(−1)m(m ≥ 1) andW2 the closure

of linear combinations of ψm,n(m ≥ n ≥ 1). We have V̂ 1
s = W1 ⊕W2. Here, W1 and W2

are orthogonal to each other in both L2(Ω) and H1(Ω). Since all the eigenfunctions and
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associated eigenvalues of W2 are known and the smallest one to be 2π2, we just need to

consider the eigenvalues in W1: if its minimum is smaller than 2π2, it is just the one we

need.

4) Let us now solve the eigenvalue problem restricted to W1 by expressing û ∈ W1 \ {0}
by

û =
∞∑

m=1

amφm with
∞∑

m=1

a2
m <∞, where φm = ψm,0 − (−1)m . (2.4.11)

Noting that û has the form û =
∑∞

m=1 am (cosmπx+ (−1)m cosmπ(y) + (−1)m), it must

be of the form, for an unknown single variable function g = g(t),

û(x, y) = g(x) + g(1 − y) .

Substituting the expression above into (2.4.9), we have

−g′′(t) = λg(t)(0 < t < 1), g′(0) = 0, g(1) +

∫ 1

0

g(t)dt = 0 .

Solving the eigenvalue problem above, we have that the eigenfunction associated with the

smallest eigenvalue is g(t) = cos(
√
λ1t), where λ1 is the first positive root of

√
λ+ tan

√
λ = 0 .

Clearly, λ1 lies in the interval (π2/4, π2) and is the unique solution there. Since λ1 <

2π2, it is exactly the desired eigenvalue of eigenvalue problem in (2.4.10). Moreover, an

eigenfunction associated to λ1 is û(x, y) = cos
√
λ1x + cos

√
λ2(1 − y) .

5) To obtain the concrete value of
√
λ1, we are just required to find the first positive root

of

f(t) := cos t+ t−1 sin t = 2

∞∑

m=0

(−1)m(m + 1)t2m

(2m+ 1)!
(t > 0) .

Moreover, the series above is an alternating one, and for a fixed t and sufficiently large

m, the absolute values of its terms converge monotonically to 0 as m→ ∞. Thus we can

use its truncated finite series to give both lower and upper bounds for f(t). Let us define

fn by

fn(t) = 2

n∑

m=0

(−1)m(m+ 1)t2m

(2m+ 1)!
.
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It is to be noted here that, as least in principle, all the computations can be performed in

the finite-digit binary arithmetic without rounding errors, provided t is a rational number.

For example, by taking n = 4, 5, we can bound t0 =
√
λ1 as 2.0287 < t0 < 2.0291, since

f(2.0291) < f4(2.2091) < 0 and f(2.2087) > f5(2.2087) > 0.

Remark: Here we show another way to derive the determination equation for C1. Substi-

tuting (2.4.11) into (2.4.9) and letting v̂s be each ψm, we have the equations for coefficients

am’s:

(m2π2 − λ)am = λ(−1)m
∞∑

n=1

(−1)nan (m ∈ N) ,

where we can show
∑∞

n=1(−1)nan 6= 0, λ 6= m2π2 and am 6= 0 (∀m ∈ N). So

(−1)mam = (m2π2 − λ)−1λ

∞∑

n=1

(−1)nan (m ∈ N)

and ∞∑

m=1

(−1)mam =
∞∑

m=1

(m2π2 − λ)−1λ
∞∑

n=1

(−1)nan .

Hence

1 =

∞∑

m=1

λ

m2π2 − λ
=

∞∑

m=1

1

m2(π/
√
λ)2 − 1

.

Notice here the Fourier expansion of cos ax on [−π, π]:

cos ax =
sin aπ

π

(
1/2 +

∞∑

n=1

(−1)n 2a

a2 − n2
cos nx

)
,

where a is a non-integer real number. Letting x = π above, we have

∞∑

m=1

1

(m/a)2 − 1
=

1

2
− πa

2 tanπa
.

Further, substituting a =
√
λ/π into equation above, we obtain (2.4.1).

Determination of C3

The method for determining C3 determining is essentially the same as used for C0 and

C1 = C2. Here we show the outline of the proof in three steps.
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1) The eigenvalue problem associated to C3 is given by: Find {λ, u} ∈ R × V 3 \ {0}
such that

(∇u,∇v)T = λ(u, v)T (∀v ∈ V 3) . (2.4.12)

Here, T is the unit right isosceles triangle T1,π/2,1, V
3 = V 3

1,π/2,1 is defined in (2.2.3), and

the inner products are those for T . Notice that we are interested only in the minimum

eigenvalue and the associated eigenfunctions.

Let us divide T into two congruent parts by the line x1 = x2, which is also the line of

symmetry for T . Moreover, one of the congruent parts is denoted by T̂ :

T̂ = {x = {x1, x2} ∈ T ; x1 > x2} .

The eigenfunction u 6= 0 can be uniquely decomposed into the symmetric part us and the

antisymmetric one ua:

u = us + ua,

where the symmetry and antisymmetry are those with respect to x1 = x2. Due to the

orthogonality of us and ua for the bi-linear forms (·, ·)T and (∇·,∇·)T , the functions us

and ua can be dealt with separately: us and ua both belong to V 3 and satisfy (2.4.12) for

the minimum eigenvalue λ.

2) We first consider the case where us 6= 0. In this case, the restriction û of us to T̂

is not zero and satisfies the following eigenvalue problem related to T̂ :

û ∈ V̂ 3 \ {0}; (∇û,∇v̂)T̂ = λ(û, v̂)T̂ (∀v̂ ∈ V̂ 3) , (2.4.13)

where λ is identical to the former one, the inner products are the L2 ones for T̂ , and V̂ 3

is defined by

V̂ 3 = {v̂ ∈ H1(T̂ );

∫ 1

2

0

v̂(1 − s, s)ds = 0 } . (2.4.14)

Now we can see that this is essentially the same problem as the eigenvalue problem for

C1(1, π/2, 1/
√

2), since T̂ is congruent to T1,π/2,1/
√

2. It is also fairly easy to see that the

eigenpair for the minimum eigenvalue of (2.4.13) satisfies (2.4.12), if the eigenfunction is

extended to whole T symmetrically with respect to x1 = x2. Thus û is an eigenfunction for

the minimum eigenvalue of (2.4.12) in the present case. Then we find that C3 = C1/
√

2,

since C1(α, θ, 1/
√

2) = C1(α, θ)/
√

2. Of course, this conclusion is derived under the

assumption us 6= 0.
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3) Secondly, we consider the case where ua 6= 0. Due to the antisymmetry, the trace

of ua to the line of symmetry x1 = x2 inside T is just 0. Moreover, any antisymmetric

function in H1(T ) automatically satisfies the line integration condition imposed on V 3.

Thus the restriction u† of ua to T̂ is not zero and is an eigenfunction of the eigenvalue

problem:

u† ∈ V † \ {0}; (∇u†,∇v† = λ(u†, v†)T † (∀v† ∈ V †) , (2.4.15)

where λ is identical to the former one, and V † is defined by

V † = {v† ∈ H1(T †); v†(s, s) = 0 (0 < s <
1

2
) } .

If we consider the reflection with respect to the line x1 = 1/2, (2.4.15) becomes the

problem of the same form if we replace V † by

V ∗ = {v∗ ∈ H1(T̂ ); v∗(1 − s, s) = 0(0 < s <
1

2
)} .

Clearly, the eigenvalues remain the same under such a transformation. Since V ∗ ⊂ V̂ 3,

the minimum eigenvalue of (2.4.15) cannot be smaller than that of (2.4.13), as can be seen

by considering the characterization of the minimum eigenvalue by the Rayleigh quotient.

Thus it is sufficient to consider only the case where us 6= 0, and the proof is complete.

2.4.2 Estimating C4(α, θ) by Ci(α, θ)’s (i = 1, 2, 3)

In section 2.3.1, we extend the method of Babuška-Aziz to deduce an upper bound for

C4(α). Here we will further consider the problem of estimating C4(α, θ) by using Ci(α, θ)’s

(i = 1, 2, 3).

Firstly, let us observe the characterization of C4(α, θ) again:

C4(α, θ)
2 = sup

u∈V 4

α,θ
\{0}

|u|21,Tα,θ

|u|22,Tα,θ

= sup
u∈V 4

α,θ
\{0}

‖∂1u‖2
Tα,θ

+ ‖∂2u‖2
Tα,θ

|∂1u|21,Tα,θ
+ |∂2u|21,Tα,θ

.

The key idea for estimating C4(α, θ) is to relax the curl-free condition ∂12u = ∂21u by

weaker ones, e.g.
∫

ei
∇u · tids = 0 for i = 1, 2, 3, where ti denotes the unit vector along

the direction of the edges ei in clockwise, that is

t1 = (−1, 0), t2 = (cos θ, sin θ), t3 =
(1 − cos θ,− sin θ)√

2(1 − cos θ)
.

Let us introduce two constants C{4,e12}(α, θ, h) and C{4,e123}(α, θ, h) by

32



C{4,e123}(α, θ, h)
2 := sup

u, v ∈ H1(Tα,θ,h) \ {0}
(u, v)·ti ∈ V i

α,θ,h(i = 1, 2, 3)

‖u‖2 + ‖v‖2

‖∇u‖2 + ‖∇v‖2
(2.4.16)

and

C{4,e12}(α, θ, h)
2 := sup

u, v ∈ H1(Tα,θ,h) \ {0}
(u, v) · ti ∈ V i

α,θ,h (i = 1, 2)

‖u‖2 + ‖v‖2

‖∇u‖2 + ‖∇v‖2
. (2.4.17)

Denote Ci(α, θ, 1) by Ci(α, θ) for i = {4, e12}, {4, e123}. Then we find

C4(α, θ) ≤ C{4,e123}(α, θ) ≤ C{4,e12}(α, θ) . (2.4.18)

Firstly, we will utilize the second inequality in (2.4.18) to give an explicit upper bounds

for C4(α, θ) by using C1(α, θ) and C2(α, θ). One thing to be pointed out is that the values

of C1(α, θ) and C2(α, θ) can be well evaluated with a posteriori estimates, as we will

discuss in Chapter 3.

Theorem 2.4.2. Given a triangle Tα,θ for α ∈ (0, 1] and θ ∈ (0, π), we can give an

upper bound for C4(α, θ) in terms of C1(α, θ) and C2(α, θ) as below: (We write C1(α, θ),

C2(α, θ) as c1, c2 for purpose of abbreviation.)

C4(α, θ) ≤
1√

2 sin θ

(
c21 + c22 + 2c1c2 cos2 θ + (c1 + c2)

√
(c1 − c2)

2 + 4c1c2 cos2 θ

)1/2

.

(2.4.19)

Proof. For any w ∈ H2(Tα,θ), let u := ∂1w and v := ∂2w and introduce a new quantity

v̂ := u cos θ + v sin θ ∈ H1(Tα,θ). Clearly, u ∈ V 1
α,θ. By noticing that

∫

e2

(u, v) · t2ds =

∫

e2

u cos θ + v sin θds = 0 ,

we have
∫

e2

v̂ = 0, which means v̂ ∈ V 2
α,θ.

Considering the definitions of C1(α, θ) and C2(α, θ), such results are clear:

‖u‖ ≤ C1(α, θ)‖∇u‖, ‖v̂‖ ≤ C2(α, θ)‖∇v̂‖ . (2.4.20)
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As v = (v̂ − u cos θ)/ sin θ, we have

‖v‖2 = sin−2 θ‖v̂ − u cos θ‖2

= sin−2 θ
(
‖v̂‖2 + cos2 θ‖u‖2 − 2 cos θ(v̂, u)

)

≤ sin−2 θ
(
‖v̂‖2 + cos2 θ‖u‖2 + 2| cos θ|‖v̂‖‖u‖

)
.

So we obtain:

‖u‖2 + ‖v‖2 ≤ sin−2 θ
(
‖u‖2 + ‖v̂‖2 + 2| cos θ| ‖v̂‖ ‖u‖

)
. (2.4.21)

Similarly, we have

‖∇u‖2 + ‖∇v‖2 ≥ sin−2 θ
(
‖∇u‖2 + ‖∇v̂‖2 − 2| cos θ| ‖∇v̂‖ ‖∇u‖

)
. (2.4.22)

Considering (2.4.18), we find

C4(α, θ)
2 ≤ C{4,e12}(α, θ)

2 ≤ ‖u‖2 + ‖v‖2

‖∇u‖2 + ‖∇v‖2
.

Now, considering the inequalities (2.4.20) and those of (2.4.21) and (2.4.22), we have

C4(α, θ)
2 ≤ sin−2 θ (‖u‖2 + ‖v̂‖2 + 2| cos θ|‖v̂‖ ‖u‖)

sin−2 θ (‖∇u‖2 + ‖∇v̂‖2 − 2| cos θ|‖∇v̂‖ ‖∇u‖)

≤ c21‖∇u‖2 + c22‖∇v̂‖2 + 2c1c2| cos θ| ‖∇v̂‖ ‖∇u‖
‖∇u‖2 + ‖∇v̂‖2 − 2| cos θ|‖∇v̂‖ ‖∇u‖

=
etAe

etBe
,

where e is the vector (‖∇u‖, ‖∇v̂‖)t, and A and B are the matrices defined by

A =

(
c21 c1c2 | cos θ|

c1c2 | cos θ| c22

)
, B =

(
1 −| cos θ|

−| cos θ| 1

)
.

The generalized eigenvalue problem Ax = λBx has the maximum eigenvalue as

λmax =
1

2 sin2 θ

(
c21 + c22 + 2 cos2 θc1c2 + (c1 + c2)

√
(c1 − c2)

2 + 4 cos2 θc1c2

)
.

So, for arbitrary vector e 6= 0,
etAe

etBe
≤ λmax .

Thus, we obtain one upper bound for C4(α, θ), which is just the one in (2.4.19).
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Remark 2.4.3. We can get the same estimation of C4(α, θ) as the one in (2.4.19) in

another way. From equation (2.4.21), we have

sin2 θ(‖u‖2 + ‖v‖2) ≤ c21‖∇u‖2 + 2c1c2| cos θ|‖∇u‖‖∇v̂‖ + c22‖v̂‖2

= c21‖∇u‖2 + 2c1c2| cos θ| ‖∇u‖ ‖ cos θ∇u+ sin θ∇v‖
+c22‖ cos θ∇u+ sin θ∇v‖

≤ (c21 + 2c1c2 cos2 θ + c22 cos2 θ)‖∇u‖2 + c22 sin2 θ‖∇v‖2

+2(c1c2 + c22) sin θ | cos θ|‖∇u‖‖∇v‖
=: ẽtÃẽ ,

where ẽ = (‖∇u‖, ‖∇v‖)t, and Ã is defined by

Ã :=

(
c21 + 2c1c2 cos2 θ + cos2 θc22 (c1c2 + c22) sin θ | cos θ|

(c1c2 + c22) sin θ | cos θ| c22 sin2 θ

)

which has the maximum eigenvalue λ̃max as

λ̃max =
1

2

(
c21 + c22 + 2 cos2 θc1c2 + (c1 + c2)

√
(c1 − c2)

2 + 4 cos2 θc1c2

)
.

Hence

‖u‖2 + ‖v‖2 ≤ sin−2 θ λ̃max (‖∇u‖2 + ‖∇v‖2) ,

which finally leads to the estimate in (2.4.19).

Remark 2.4.4. In the proof above, the intermediate problem of C{4,e12}(α, θ) gives an esti-

mate for C4(α, θ) as in (2.4.19). Another possibility is to apply the constant C{4,e123}(α, θ)

to deduce a new estimate, which is very interesting but not done yet.

An important thing to be pointed out is that, through the deduction of (2.4.19), there

may be over and under estimates in the inequalities (2.4.21) and (2.4.22). Therefore,

to have better estimates, we may evaluate the constants C{4,e12}(α, θ) and C{4,e123}(α, θ)

directly. This is not difficult since the derivatives of functions associated to the constants

are only of second order. The piecewise linear finite element space can be used to construct

conforming subspaces of H1(Ω)2 with the corresponding constraint conditions satisfied.

Also, it may be possible to give a posteriori error estimates for the finite element solutions,
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Figure 2.7: Upper bounds for C4(α, 2π/3)

C2(α)

C4(α)

C1(α)

C1(α)

C2(α)

C4(α)

◦ C{4,e123}(α)

+ C{4,e12}(α)
◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦

◦
◦

◦
◦

◦
◦

◦
◦

◦
◦

+ + + + + + + + + + + + + + +
+

+
+

+
+

0 0.2 0.4 0.6 0.8 1

0.3

0.35

0.4

0.45

0.5

α

Figure 2.8: Upper bounds for C4(α, π/2)
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which will be left for our future research. For the moment, we have only executed numerical

computations.

In Figure 2.7, we show the estimate of (2.4.19), which we denote as Ĉ4(α, θ), and

the numerical evaluation of C{4,e12}(α, θ) in the case of θ = 2π/3. We can see that

C{4,e123}(α, 2π/3) gives quite good upper bound for C4(α, 2π/3). Although the gap between

C{4,e123}(α, 2π/3) and C4(α, 2π/3) is very small, we cannot expect it to be zero.

As a complement, we also show the computational results for θ = π/2 in Figure 2.8.

Again both C{4,e12} and C{4,e123} give upper bound for C4(α). Now it is clear to see the

difference between C4(1, π/2) and C{4,e123}(1, π/2), although here only the approximate

values are available. Also, we can find that the numerical values of C2(α) agrees with

C{4,e12}(α). We can easily show that C{4,e12}(α) = max{C1(α), C2(α)}, but are not yet

able to prove that max{C1(α), C2(α)} = C2(α) or C2(α) ≥ C1(α) for α ≤ 1.

2.5 Asymptotic behaviour of error constants on slen-

der triangular domain

2.5.1 Preliminary and main results

We will now analyze the asymptotic behaviors of the constants Ci(α)’s (0 ≤ i ≤ 5) as

α → +0 by adopting various techniques developed e.g. in [33]. In particular, the right

limit values Ci(+0)’s are given by zeros of certain transcendental equations (derived from

eigenvalue problems of ordinary differential equations, ODE’s) in terms of the hyper-

geometric functions [51]. For example, C2(+0)−1 is equal to the first positive zero of

the Bessel function J0(x). Moreover, these right limits give lower bounds for respective

Ci(α)’s, including the non-trivial case i = 4. Such results can be of use for understanding

and analyzing the so called ”anisotropic triangulations” discussed e.g. in [1, 8, 20].

We first introduce several function spaces, which play important role in the following

discussion.

Hk,Z(T ) = {v ∈ Hk(T ); ∂v/∂x2 = 0} (k = 1, 2), (2.5.1)

V i,Z = {v ∈ V i; ∂v/∂x2 = 0} (0 ≤ i ≤ 4), (2.5.2)

which are actually identified with the spaces of functions dependent only on the variable
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x1 as we will see later. Let us introduce bilinear forms a
(i)
Z (·, ·)’s for i = 1, 2:

a
(1)
Z (u, v) :=

(
∂u

∂x1

,
∂v

∂x1

)

T

, ∀u, v ∈ H1(T ) , (2.5.3)

a
(2)
Z (u, v) :=

(
∂2u

∂x2
1

,
∂2v

∂x2
1

)

T

, ∀u, v ∈ H2(T ) . (2.5.4)

Although these are defined over the whole H1 and H2 spaces for convenience, the partial

derivatives above can be actually replaced with the ordinary ones when they are considered

over the respective H1,Z and H2,Z spaces.

As a characterization of the above H1,Z(T ), let us state a fundamental lemma to be

used for our analysis. Its proof is omitted here since it can be performed by slightly

modifying that for Theorem 3.1.4 of [23]. Of course, we can draw the same conclusions

for other spaces mentioned in (2.5.1) and (2.5.2).

Lemma 2.5.1. Any v ∈ H1,Z(T ) can be identified with a function v∗ of single variable

x1:

v(x1, x2) = v∗(x1) for a.e. x = {x1, x2} ∈ T . (2.5.5)

Remark 2.5.1. The present lemma does not necessarily hold for general domains. In the

2-dimensional case where we are considering here, it holds for a domain Ω ⊂ R
2 which

is ”connected in x2 direction” in the sense that for any two points x and x′ in Ω with a

common x1 component, the segment connecting these points is contained in Ω.

We first quoted the main results below, while the proof is given in the following sub-

sections.

Theorem 2.5.1. For each i (0 ≤ i ≤ 5), Ci(+0) = limα→+0 Ci(α) exists and is positive.

Moreover, they are the lower limits of the respective constants, i.e., Ci(+0) = infα>0 Ci(α)

for 0 ≤ i ≤ 5. They are characterized by Ci(+0) = 1/
√
λ(i) for 0 ≤ i ≤ 5, where λ(i)’s are

the minimum eigenvalues of the following eigenvalue problems.

0 ≤ i ≤ 3: Find λ = λ(i) ∈ R and u ∈ V i,Z \ {0} such that

a
(1)
Z (u, v) = λ(u, v)T ; ∀v ∈ V i,Z , (2.5.6)

i = 4: Find λ = λ(4) ∈ R and u ∈ V 4,Z \ {0} such that

a
(2)
Z (u, v) = λa

(1)
Z (u, v)T ; ∀v ∈ V 4,Z , (2.5.7)
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i = 5: Find λ = λ(5) ∈ R and u ∈ V 4,Z \ {0} such that

a
(2)
Z (u, v) = λ(u, v)T ; ∀v ∈ V 4,Z . (2.5.8)

These eigenvalue problems are also expressed by those for the following 2rd- or 4th-order

ordinary differential equations for u = u(s) over the interval [0, 1].

i = 0 :

−[(1 − s)u′(s)]′ = λ(0)(1 − s)u(s) (0 < s < 1),

∫ 1

0

(1 − s)u(s)ds = u′(0) = 0, (2.5.9)

i = 1 :

−[(1 − s)u′(s)]′ = λ(1)(1 − s)u(s) + C (0 < s < 1),

∫ 1

0

u(s)ds = u′(0) = 0, (2.5.10)

i = 2:

−[(1 − s)u′(s)]′ = λ(2)(1 − s)u(s) (0 < s < 1), u(0) = 0, (2.5.11)

i = 3: essentially the same as for i = 1;

−[(1 − s)u′(s)]′ = λ(3)(1 − s)u(s) + C (0 < s < 1),

∫ 1

0

u(s)ds = u′(0) = 0, (2.5.12)

i = 4: actually reduces to the case i = 1;

[(1 − s)u′′(s)]′′ = −λ(4)[(1 − s)u′(s)]′ (0 < s < 1), u(0) = u(1) = u′′(0) = 0 , (2.5.13)

i = 5 :

[(1 − s)u′′(s)]′′ = λ(5)(1 − s)u(s) (0 < s < 1), u(0) = u(1) = u′′(0) = 0 . (2.5.14)

Here, C is an unknown constant to be determined simultaneously with u and λi(i = 1, 3) .

Recall that the triangle T here is still referred as a unit isosceles right triangle. Let us

also recall the definition of Rayleigh quotients R̂
(i)
α ’s defined in equations (2.3.2), (2.3.3),

(2.3.4), and introduce new quantities λi(α)’s by

λi(α) := Ci(α)−2 = inf
v∈V i\{0}

R̂(i)
α (v) (0 ≤ i ≤ 5) . (2.5.15)
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Uniform boundedness of λi(α)’s: One of the common important properties for these

constants is that λi(α)’s are uniformly bounded for α ∈ (0,∞), because for a fixed w ∈
V min{i,4} with w 6= 0 and ∂2w ≡ 0,

λi(α) ≤ R̂(i)
α (w) ≡ C̃(i) (0 ≤ i ≤ 5) , (2.5.16)

where the right-hand sides are constants independent of α for a fixed w.

For i 6= 4, the proofs for the determination of λi(+0)’s are similar, so we will only

show the one for λ0(+0) as an example. For i = 4, the proof is more complex and will be

given separately.

Before giving the details of the proof, we show in Table 2.1 the numerical results for

Ci(+0)’s (0 ≤ i ≤ 5).

Table 2.1: Numerical values of Ci(+0)’s (0 ≤ i ≤ 5)

i 0 1,3,4 2 5
Ci(+0) 0.26098 0.32454 0.41583 0.10790

2.5.2 Determination of λi(+0)’s (0 ≤ i ≤ 5; i 6= 4)

Here we only discuss λ0(+0). Let uα ∈ V 0 be the minimizing function in (2.5.15)

corresponding to λ0(α) and assume that ‖uα‖ = 1.

Define λ̂0 to be the infimum of the following infimum problem:

λ̂0 = inf
u∈V 0,Z\{0}

‖∂1u‖2

‖u‖2
, (2.5.17)

where V 0,Z is defined in (2.5.2).

Theorem 2.5.2. Let λ0(α) be defined as above. Then the limit λ0(+0) := limα→+0 λ0(α)

exists and is given by λ0(+0) = λ̂0.

Proof. 1) First, it is easy to see the existence of λ0(+0) = limα→+0 λ0(α) by considering

two facts that λ0(α) is monotonically increasing as α decreases to +0, and that λ0(α)

40



is uniformly bounded for all α ∈ (0, 1], as we have already shown. Actually we have

λ0(α) ≤ λ̂0 for λ̂0 in (2.5.17).

Since ‖uα‖L2(T ) = 1, we have λ0(α) = ‖∂1uα‖2 + 1
α2 ‖∂2uα‖2, so that ‖∂1uα‖ and

α−2‖∂2uα‖ are uniformly bounded for α ∈ (0, 1]. Thus, ‖uα‖H1(T ) is uniformly bounded.

From Rellich’s theorem, there exists a sequence {uαi
}∞i=1 with αi → +0 and u0 ∈ H1(T )

such that

{
uαi

⇀ u0 in H1(T ) ,
uαi

→ u0 in L2(T ) ,
(2.5.18)

where ’⇀’ ( and ’→’ ) denotes the weak ( and respectively the strong ) convergence of

the sequence in the corresponding spaces. As {uαi
, λ(αi)} satisfies ‖∂2uαi

‖2 ≤ α2
iλ0(αi) ≤

α2
i λ̂0, we have limi→∞ ‖∂2uαi

‖ = 0. Since ∂2uαi
⇀ ∂2u0 in L2(T ), we have ∂2u0 = 0, so

that u0 ∈ V 0,Z . Moreover, we can see limi→∞ ‖uαi
‖ = ‖u0‖ = 1, so that u0 6= 0.

2) As u0 ∈ V 0,Z and ‖u0‖=1, we have from the definition of λ̂0 that

λ̂0 ≤ ‖∂1u0‖2 .

Also, considering the weak convergence of {uαi
} in H1(T ), we get

‖∂1u0‖2 ≤ lim inf
i→∞

‖∂1uαi
‖2

≤ lim
i→∞

(‖∂1uαi
‖2 +

1

α2
i

‖∂2uαi
‖2)

= lim
i→∞

R̂(0)
αi

(uαi
)

= λ0(+0) .

Hence,

λ̂0 ≤ λ0(+0) . (2.5.19)

On the other hand, since

λ̂0 = inf
v∈V 0,Z\{0}

R̂(0)
α (v) ≥ inf

v∈V 0\{0}
R̂(0)

α (v) = λ0(α) ,

and considering the convergence of {λ0(αi)}, we get

λ̂0 ≥ lim
i→∞

λ0(αi) = λ0(+0) . (2.5.20)
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From the inequalities (2.5.19) and (2.5.20), we can now conclude that

λ0(+0) = λ̂0 .

2.5.3 Determination of λ4(+0)

Recall that

λ4(α) := inf
v∈V 4\{0}

R̂(4)
α (v) ,

where R̂
(4)
α (v) can be expressed by

R̂(4)
α (v) =

‖∂11v‖2
T + 2α−2‖∂12v‖2

T + α−4‖∂22v‖2
T

‖∂1v‖2
T + α−2‖∂2v‖2

T

=:
aα(v, v)

bα(v, v)
.

In the following proof, we will omit the subscript of λ4(α) as λ(α). Also, assume one of

the minimizing functions for λ(α) to be denoted by uα and bα(uα, uα) = 1.

Theorem 2.5.3. The limit λ(+0) := limα→+0 λ(α) exists. Moreover, λ(+0) is the small-

est eigenvalue of the eigenvalue problem for λ > 0 and u ∈ V 4,Z \ {0}:

(∂11u, ∂11w) = λ(∂1u, ∂1w), ∀w ∈ V 4,Z , (2.5.21)

where V 4,Z is defined in(2.5.2).

Proof. As we have shown, λ(α) is continuous and uniformly bounded in α > 0. Thus

both lim infα→+0 λ(α) and lim supα→+0 λ(α) exist, and what we must prove is:

lim inf
α→+0

λ(α) = lim sup
α→+0

λ(α) .

That is, we will show that {λ(α)}α>0 has a unique accumulation point as α→ +0.

From the definition of λ(α) and uα, the eigenpair (uα, λ(α)) satisfies:

(∂11uα, ∂11w)T +
2

α2
(∂12uα, ∂12w)T +

1

α4
(∂22uα, ∂22w)T

= λ(α)

(
(∂1uα, ∂1w)T +

1

α2
(∂2uα, ∂2w)T

)
for ∀w ∈ V 3 . (2.5.22)

The proof is performed by the following several steps.
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1. As λ(α) is uniformly bounded for all α ∈ (0, 1], we can find a sequence {αi}∞i=1 and

λ∗ such that αi → +0, λ(αi) → λ∗ as i → ∞. We will show that the value of λ∗ is

independent of the choice of {αi}.

2. Since bα(uα, uα) = 1 and λ(α) is uniformly bounded, both |uαi
|2,T and |uαi

|1,T are

uniformly bounded. Considering the inequality that ‖u‖L2(T ) ≤ C5|u|2,T for u ∈ V 4,

cf.(2.2.9), we have ‖uα‖L2(T ) are uniformly bounded. Hence, {uα} are uniformly

bounded in H2(T ) for α > 0. By the compact theorem in Hilbert space, we can find

a sub-sequence of {αi}∞i=1, still using the same notation, and u0 ∈ H2(T ) such that

{
uαi ⇀ u0 weakly in H2(T ) ,
uαi → u0 strongly in H1(T ) .

Considering the limit for bαi
(uαi

, uαi
)=1, we find u0 ∈ V 4 satisfies:

∂2u0 = 0, i.e., u0 ∈ V 4,Z .

As there are two possible cases: u0 = 0 and u0 6= 0, we will discuss each case as

follows.

3. (Case: u0 6= 0) In (2.5.22), let the test function w be chosen from V 4,Z(T ) and α be

{αi}, then it holds that

(∂11uαi
, ∂11w)T = λ(αi)(∂1uαi

, ∂1v)T ; ∀v ∈ V 4,Z(T ) .

Taking the limit for i→ ∞, we have

(∂11u0, ∂11w)T = λ∗(∂1u0, ∂1w)T ; ∀w ∈ V 4,Z(T ) . (2.5.23)

Thus, {u0, λ
∗} ∈ {V 4,Z \ {0}} × R is an eigenpair of eigenvalue problem defined by

(2.5.23). It is easy to see that λ∗ is actually the smallest eigenvalue by using the

arguments similar to those in the preceding subsection.

4. (Case: u0 = 0)

Define vα = ∂2uα/α, then we can see that vα ∈ V 2 (⊂ H1(T )). As u0 = 0 and

bαi
(uαi

, uαi
) = 1, we have ‖vαi

‖ → 1 as i → ∞. Further, considering the bounded-

ness of aαi
(uαi

, uαi
) = λ(αi), we find {vαi

} are also uniformly bounded in H1(T ).
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In the same way as before, we find that there exists a sub-sequence of {vαi
}, still

using the same notation, and v0 ∈ H1(T ) such that

{
vαi ⇀ v0 in H1(T ) ,
vαi → v0 in L2(T ) .

(2.5.24)

Since ‖∂2vαi
‖2 ≤ α2

i aαi
(uαi

, uαi
) and the α2

i aαi
(uαi

, uαi
) tends to 0 as i → ∞, we

can deduce that ∂2v0 = 0. Further by Lemma (2.5.1), v0 can be identified with a

function v∗0 of single varible x1.

Multiply each side of (2.5.22) by α, and choose the test function w ∈ V 4 such that

∂22w ≡ 0, then we get:

α(∂11uα, ∂11w)T + 2(∂12uα/α, ∂12w)T

= λ(α) (α(∂1uα, ∂1w)T + (∂2uα/α, ∂2w)T ) . (2.5.25)

Substituting vαi
= ∂2uαi

/αi in the equation above and letting i → ∞, we find λ∗

and v∗0 satisfy

2(∂1v
∗
0, ∂12w)T = λ∗(v∗0, ∂2w)T . (2.5.26)

For each v ∈ C∞
0 (0, 1), take w(x1, x2) := v(x1)x2. Then

2(∂1v
∗
0, ∂1v)T = λ∗(v∗0, v)T , (2.5.27)

that is,

2

∫ 1

0

(1 − x1)
dv∗0(x1)

dx1

dv

dx1
dx1 = λ∗

∫ 1

0

(1 − x1)v
∗
0(x1)v(x1)dx1, ∀v ∈ C∞

0 (0, 1) .

(2.5.28)

Finally, we can conclude that v∗0 together with λ∗ satisfies

{
−((1 − s)u′(s))′ = λ

2
u(s)(1 − s) for s ∈ (0, 1) ,

u(0) = 0 .
(2.5.29)

As λ∗ > 0, the solution of the above is of the form, with arbitrary constants c1 and

c2,

v∗0(s) = c1J0

(√
λ∗

2
(1 − s)

)
+ c2Y0

(√
λ∗

2
(1 − s)

)
, (2.5.30)
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where J0(s) and Y0(s) are the 0-th order Bessel functions of the frist and second

kinds, respectively. As is well known, J0(s) is sufficiently smooth, while Y0(s) is

of the form Y0(s) = c3 log s + r(s) for s > 0, where c3 6= 0 is a constant and r(s)

a sufficiently smooth remainder term [51]. To make v∗0 has the extension over T

belong to V 2,Z ⊂ H1(T ), the constant c2 must be zero. Also to satisfy the boundary

condition,
√
λ∗/2 needs to be the positive zero of J0(s). In fact, J0(s) has countably

many positive zeros without any accumulation points except +∞. Denoting the

smallest positive zero by γ0 > 0, we have

λ∗ ≥ 2γ2
0 . (2.5.31)

We can show that γ0 > 2.25, so that λ∗ > 10. Also, considering the function

ũ(x1, x2) = sin πx1, we have R̂
(4)
α (ũ) = π2, hence

λ∗ = lim
i→∞

R̂(4)
αi

(uαi
) ≤ lim

i→∞
R̂(4)

αi
(ũ) = π2 < 10 . (2.5.32)

The two equations (2.5.31) and (2.5.32) lead to a contradiction. Hence the case that

u0 = 0 does not occur.

Now, we can conclude that λ∗ is the minimum eigenvalue of (2.5.23) (or (2.5.21))

and is independent of the selected sequence {αi}.

2.6 Numerical results

We performed floating-point number computations to see the actual dependence of

various error constants on α and θ.

2.6.1 Computational methods

To obtain approximate values of error constants, we can utilize the FEM quite effec-

tively. In particular we used the most popular P1 triangular finite element for numerical

computations of Ci(α, θ)’s for 0 ≤ i ≤ 3 by preparing appropriate triangulations of Tα,θ.

For C4(α, θ) and C5(α, θ), it is natural to use various triangular finite elements for Kirch-

hoff plate bending problems, since the associated partial differential equations are of 4th

order as is noted in Section 2.2. In our actual computations, we used the discrete Kirchhoff
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triangular element presented in [26]. On the other hand, we can also use the Siganevich

approach for computation of C4(α, θ), which also adopts the P1 element and a kind of

penalty method for a system of 2-nd order partial differential equations similar to the

incompressible Stoke system [47]. This method works well if the penalty parameter is

carefully chosen.

In every case, we have a matrix eigenvalue problem as the discretization of the original

eigenvalue problem described by a weak form. More specifically, it is a generalized matrix

eigenvalue problem with respect to unknown eigenvectors of nodal values of approximate

eigenfunctions, and it can be solved for example by the inverse iteration method and the

subspace iteration method [13]. A difficulty in deriving such matrix eigenvalue problems

come from linear constraint conditions imposed on the spaces V i
α,θ for i = 0, 1, 2, 3. Similar

constraint conditions are also necessary to deal with, if we compute C4(α, θ) by the method

of Siganevich [47]. On the other hand, we do not have such a difficulty in computing

C4(α, θ) and C5(α, θ) by Kirchhoff elements, where the linear constraints v(O) = v(A) =

v(B) = 0 for V 4
α,θ can be handled as homogeneous ”nodal” conditions.

One possible method for removing the constraints is to construct new function bases

that satisfy the constraint conditions, but then we have the final matrix that is not sparse.

Another method is to use the Lagrange multiplier method, which does not essentially

destroy the global sparseness of the matrices. We tested both approaches and obtained

reasonable results. Various iteration methods may be also available for the same purposes.

The numerical results below are obtained by the double or quadruple precision arith-

metic, and we do not employ the interval analysis. But their accuracy appears to be

reasonable at least in graphical level, since finer mesh computations give essentially the

same graphs. We hope that the effective verification methods will be established in near

future, so that the numerical results can be of strictly mathematical significance.

2.6.2 Numerical results for error constants

Here, we first show some results for Ci(α)’s (0 ≤ i ≤ 5) by the P1 conforming finite

element and the Kirchhoff triangular element in [26] with the uniform triangulation of

the domain Tα. In such calculations, Tα is subdivided into a number of small triangles

congruent to Tα,π/2,h with e.g. h = 1/20. The penalty method in [47] is also tested to

calculate C4(α) approximately.

Figure 2.9 consists of two parts and illustrates the graphs of approximate Ci(α)’s
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(0 ≤ i ≤ 5) versus α ∈ (0, 1]. Exact values of C0 and C1 = C2 together with an

approximate value of C5 are also included as horizontal lines in graphs. At α = 1, the

approximate values coincide well with the available exact ones in Theorem 2.4.1, and we

can numerically see that C1 = (C2) is a nice upper bound of C4. For general α, the

monotonically increasing behaviors theoretically predicted for Ci(α)’s (i = 0, 1, 2, 3, 5 ) as

well as the relation C4(α) ≤ min{C1(α), C2(α)} are also well observable in the graphs.

The present numerical results suggest that C4(α) is also monotonically increasing, but we

have not succeeded in proving such a conjecture. Moreover, when α ≈ 0, the numerical

results agree well with the exact right limits given in Table 2.1 based on the asymptotic

analysis.

For C4(α), we tested two methods, that is, the P1 conforming triangular finite element

with the penalty method and the Kirchhoff triangluar finite elemnt . These two methods

turned out to give almost the same results if the meshes are relatively fine and the penalty

parameter is appropriately chosen. The graph for C4(α) in Figure 2.9 is actually obtained

by the Kirchhoff element, but is indistinguishable in graphical level from the one by the

penalty method.

Figure 2.10 and 2.11 illustrate numerically obtained contour lines for Ci(α, θ)’s in the

α− θ polar coordinates, where the abscissa denotes α cos θ, and the ordinate does α sin θ.

The unit circle α = 1 is also shown by a dotted curve. The minimum required range

for α and θ is specified by equation (2.2.1), but the contour lines are shown for wider

ranges, so that we can easily see global behaviors of error constants. These results can

be also useful for practical adaptive computations to specify constants in error indicators

approximately. Of course, for strict mathematical analysis like numerical verification, we

need correct upper bounds to error constants. The contour lines are sometimes cut off in

the portions where the expected accuracy may be insufficient. For example, when α ≈ 0

or |θ − π/2| ≈ π/2, it requires extraordinarily fine meshes to retain sufficient accuracy.

The behavior of C4(α, θ) appears to be the most complicated among all the constants,

and the necessity of the maximum angle condition can be visually recognized. The other

constants seem to be uniformly bounded over the unit disk α ≤ 1.
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Figure 2.9: Numerically obtained graphs for Ci(α) (0 ≤ i ≤ 5; 0 < α ≤ 1)
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Figure 2.10: Contour lines for constants (I)
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Chapter 3

Non-conforming P1 triangular finite
element

As a well-known alternative to the conforming linear (P1) triangular finite element

for approximation of the first-order Sobolev space (H1), the nonconforming P1 element is

considered a classical discontinuous Galerkin finite element [16] and has various interesting

properties from both theoretical and practical standpoints [15, 49]. In particular, its a

priori error analysis was performed in fairly early stage of mathematical analysis of FEM,

and recently a posteriori error analysis is rapidly developing as well. There are also various

error constants to be evaluated quantitatively [3, 7, 13, 15] in order to give accurate error

estimation of such nonconforming FEM.

Based on the research for the ones related to conforming P1 FEM, we investigate

several error constants required in the error analysis for nonconforming P1 FEM, Thus

quantitative a priori error estimates for the nonconforming P1 FEM solutions become

available. A kind of a posteriori error estimate is introduced in Chapter 5, which adopts

the conforming FEM solution as well as the nonconforming one. At the end of this chapter,

we illustrate the validity of error estimation by numerical results.

3.1 A priori error estimation

We here summarize a priori error estimation for the nonconforming P1 triangular FEM.

Let Ω be a bounded convex polygonal domain in R
2 with boundary ∂Ω, and recall the

Poisson equation in a weak form with the homogeneous Dirichlet boundary condition:

(∇u,∇v) = (f, v), ∀v ∈ H1
0 (Ω). (3.1.1)
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As we mentioned in Chapter 2, the notations L2(Ω) andH1
0 (Ω) are the usual Hilbertian

Sobolev spaces associated to Ω, ∇ is the gradient operator, and (·, ·) stands for the inner

products for both L2(Ω) and L2(Ω)2. It is well known that the solution exists uniquely

in H1
0 (Ω) and also belongs to H2(Ω).

Let {T h}h>0 be a regular family of triangulations of Ω, to which we associate a family

of nonconforming P1 finite element spaces {V h
nc}h>0. Each V h

nc is constructed as below

[15, 49]:

V h
nc :={ piecewise linear functions over T h with continuity at midpoints of interior

edges and zero values at midpoints on boundary edges } . (3.1.2)

Notice that the homogeneous Dirichlet condition is not exactly satisfied. If there is no

ambiguity, within the current chapter, we will often omit the subscript of V h
nc as V h.

Then the finite element solution uh ∈ V h is determined by, for a given f ∈ L2(Ω),

(∇huh,∇hvh) = (f, vh), ∀vh ∈ V h , (3.1.3)

where ∇h is the ”nonconforming” or discrete gradient operator defined by the element-

wise relations (∇hv)|K := ∇(v|K) for any v ∈ V h +H1(Ω) and any K ∈ T h.

Eq.(3.1.3) is formally of the same form as in the conforming case, so that, for error

analysis, it is natural to consider an appropriate interpolation operator Π1
h from H1

0 (Ω)

(or its intersection with some other spaces) to V h. However, the situation is not so simple.

That is, using the Green formula, we have

(∇huh,∇hvh) = (∇u,∇hvh) −
∑

K∈T h

∫

∂K

vh
∂u

∂n
|∂Kdγ, ∀vh ∈ V h, (3.1.4)

where ∂u
∂n
|K denotes the trace of the derivative of u in the outward normal direction of

∂K, and dγ does the infinitesimal element of ∂K. Because of the line integral term above,

we cannot appreciate the best approximation property that holds in the conforming case,

e.g., equation (2.1.5). The conventional efforts of error analysis have been focused on the

estimation of such a term.

Before going into the details of analysis, let us quote Lemma 6 of [25], which is a

refined and specialized form of Strang’s second lemma for general nonconforming FEM

[15].
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Lemma 3.1.1. Let u ∈ H1
0 (Ω) and uh the solutions of (3.1.1) and (3.1.3), respectively.

Then it holds that

‖∇u−∇huh‖2 = inf
vh∈V h

‖∇u−∇hvh‖2 +

[
sup

wh∈V h\{0}

(∇u,∇hwh) − (f, wh)

‖∇hwh‖

]2

. (3.1.5)

Remark 3.1.1. The present estimate is essentially the same as the original one by Strang,

which is based on the triangle inequality. However, the above is better for quantitative

purposes because of the equality form and the smallness of the coefficients.

Proof. We sketch the proof since the Strang lemma of this equality form is not necessarily

widely known. Define ũh ∈ V h by

(∇hũh,∇hvh) = (∇u,∇hvh), ∀vh ∈ V h . (3.1.6)

The present ũh exists uniquely in V h, and satisfies the best approximation property

‖∇u−∇hũh‖ = inf
vh∈V h

‖∇u−∇hvh‖, (3.1.7)

as well as a kind of Pythagorean equality

‖∇u−∇huh‖2 = ‖∇u−∇hũh‖2 + ‖∇h(ũh − uh)‖2 . (3.1.8)

Here the last term above can be rewritten by

‖∇h(ũh − uh)‖ = sup
wh∈V h\{0}

(∇h(ũh − uh),∇hwh)

‖∇hwh‖
= sup

wh∈V h\{0}

(∇u,∇hwh) − (f, wh)

‖∇hwh‖
.

(3.1.9)

From the last three equalities, we obtain (3.1.5).

We introduce the lowest-order Raviart-Thomas triangular H(div) finite element space

W h associated to each T h [14, 29]:

W h(T h) := { Each qh ∈ W h is piecewise vector function such that on each K ∈ T h,
qh = (aK + cKx1, bK + cKx2). Moreover, the normal component of qh

is constant and continuous along each inter-element edge of T h }.
(3.1.10)

For qh ∈ W h and vh ∈ V h, because the integral of vh over each edge on ∂Ω vanishes, we

can derive by Green formula that

(qh,∇hvh) + (div qh, vh) = 0 .
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Hence

(∇huh −∇u,∇hvh) = (qh −∇u,∇hvh) + (div qh + f, vh); ∀qh ∈ W h, ∀vh ∈ V h . (3.1.11)

Thus, from (3.1.5) we have

‖∇u−∇huh‖2 = inf
vh∈V h

‖∇u−∇hvh‖2 +

[
sup

wh∈V h\{0}

(qh −∇u,∇hwh) + (div qh + f, wh)

‖∇hwh‖

]2

.

(3.1.12)

Using the Fortin operator ΠF
h : H(div; Ω) ∩H 1

2
+δ(Ω)2 →W h(δ > 0) (to be given later or

cf. [14] ) and the orthogonal projection one Qh : L2(Ω) → Xh := space of step functions

over T h, we obtain a priori error estimate:

‖∇u−∇huh‖2 ≤ ‖∇u−∇hΠhu‖2+

[
‖∇u− ΠF

h ∇u‖ + sup
wh∈V h\{0}

(f −Qhf, wh −Qhwh)

‖∇hwh‖

]2

.

(3.1.13)

Here vh in (3.1.12) is replace by Πhu, where Πh is a kind of interpolation to be specified

later which maps u ∈ H1(Ω) into V h. Also qh is taken as ΠF
h ∇u, for which will show that

div qh = div ΠF
h ∇u = −Qhf [14].

We can obtain a more concrete error estimate in terms of the mesh parameter h∗ > 0

(h will be used in a different meaning later) by deriving estimates such as, for v ∈
H1

0 (Ω) ∩H2(Ω) and g ∈ H1(Ω) + V h,

‖v − Πhv‖ ≤ γ0h
2
∗|v|2, ‖∇v −∇Πhv‖ ≤ γ1h∗|v|2 ,

‖∇v − ΠF
h ∇hv‖ ≤ γ2h∗|v|2, ‖g −Qhg‖ ≤ γ3h∗‖∇hg‖ .

(3.1.14)

Then we obtain, for the solution u ∈ H1
0 (Ω) ∩H2(Ω),

‖∇u−∇huh‖ ≤
{
h∗{γ2

1 |u|22 + (γ2|u|2 + γ3‖f‖)2}1/2 for f ∈ L2(Ω),
h∗{γ2

1 |u|22 + (γ2|u|2 + γ2
3h∗|f |1)2}1/2 for f ∈ H1(Ω),

(3.1.15)

where the term |u|2 can be bounded as |u|2 ≤ ‖f‖ for the present Ω.

We can also use Nitsche’s trick to evaluate a priori L2 error of uh [15, 30]. That is, let

us define ψ ∈ H1
0 (Ω)(∩H2(Ω)) for eh := u− uh by

(∇ψ,∇v) = (eh, v), ∀v ∈ H1
0 (Ω) .

Then we have the following lemma.
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Lemma 3.1.2. It holds for the above eh = u− uh that

‖eh‖2 = (q̃h −∇hvh,∇he
h) + (∇hvh −∇ψ,∇u− qh) + (ψ − vh, div qh + f)

+ (divq̃h + eh, eh); ∀vh ∈ V h, ∀qh, q̃h ∈ W h .

Proof. As in the derivation of (3.1.11), we have for the above ψ, eh, vh and q̃h that

(q̃h,∇he
h) + (divq̃h, e

h) = 0, (∇hvh, qh) + (vh, div qh) = 0, (∇ψ, qh) + (ψ, div qh) = 0 .

On the other hand, since u and uh are the solutions of (3.1.1) and (3.1.3), respectively,

we find that

(∇ψ,∇u) = (ψ, f), (∇hvh,∇he
h) = (∇hvh,∇u−∇huh) = (∇hvh,∇u) − (vh, f) .

From the above equalities and ‖eh‖2 = (eh, eh), we can obtain the desired identity.

Substituting vh = Πhψ, qh = ΠF
h ∇u and q̃h = ΠF

h ∇ψ into the equation (3.1.16), we

obtain

‖eh‖ = (ΠF
h ∇ψ −∇ψ + ∇ψ −∇hΠhψ,∇he

h) + (∇hΠhψ −∇ψ,∇u− ΠF
h ∇u)+

(ψ − Πhψ, f −Qhf) + (eh −Qhe
h, eh −Qhe

h) , (3.1.16)

where we utilize the relations such that div qh = div ΠF
h∇u = −Qhf and div q̃h =

div ΠF
h∇ψ = −Qhe

h. Then we have, by (3.1.14) as well as the relations |u|2 ≤ ‖f‖ and

|ψ|2 ≤ ‖eh‖,

‖eh‖2 ≤
[
(γ1 + γ2)h∗‖∇he

h‖ + (γ0 + γ1γ2)h
2
∗‖f‖

]
‖eh‖ + γ2

3h
2
∗‖∇he

h‖2 , (3.1.17)

where the term γ0h
2
∗‖f‖ can be replaced with γ0γ3h

3
∗|f |1 if f ∈ H1(Ω). This may be

considered a quadratic inequality for ‖eh‖, and solving it gives an expected order estimate

‖u− uh‖ = ‖eh‖ = O(h2
∗):

‖eh‖ ≤ h∗
2

(A1 +
√
A2

1 + 4A2); (3.1.18)

where A1 := (γ1 + γ2)‖∇he
h‖ + (γ0 + γ1γ2)h∗‖f‖, A2 := γ2

3‖∇he
h‖2 .
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3.2 Error constants for nonconforming FEM

To analyze the error constants in (3.1.14), let us consider their element-wise counter-

parts. First we configure the triangular element in the same way of section 2.2. Here we

recall the definition of the geometric parameters: h, α and θ are positive constants such

that

h > 0, 0 < α ≤ 1, (
π

3
≤) cos−1 α

2
≤ θ < π . (3.2.1)

Each triangle Tα,θ,h has three vertices O(0, 0), A(h, 0) and B(αh cos θ, αh sin θ) and three

edges ei’s (i = 1, 2, 3) defined by {e1, e2, e3} = {OA,OB,AB} (Figure 3.2). Hence h = OA

still denotes the medium edge length. The abbreviation of notations will be the same as

the one in last chapter, e.g., Tα,θ = Tα,θ,1, Tα = Tα, π
2

and T = T1. Also we will use the

notations ‖ · ‖ and | · |k as the norm and standard semi-norms for functions over Tα,θ,h,

where the subscript of domain is often omitted.

B(αh cos θ, αh sin θ)

A(h, 0)
O

θ

Tα,θ,h{αh {
h

Figure 3.1: Triangular element Tα,θ,h

In addition to the linear spaces V i
α,θ,h, i ∈ {0, 1, 2, 3, 4} defined in Section 2.2, we

introduce several new closed linear spaces for functions over Tα,θ,h:

V
{1,2}
α,θ,h = { v ∈ H1(Tα,θ,h) |

∫

e1

v(s)ds =

∫

e2

v(s)ds = 0 } , (3.2.2)

V
{1,2,3}
α,θ,h = { v ∈ H1(Tα,θ,h) |

∫

ei

v(s)ds = 0, (i = 1, 2, 3) } , (3.2.3)

V 4,n
α,θ,h = { v ∈ H2(Tα,θ,h) |

∫

ei

v(s)ds = 0, (i = 1, 2, 3) } . (3.2.4)

The abbreviations for notations V i
α,θ,h are also used here, e.g., V

{1,2}
α,θ = V

{1,2}
α,θ,1 , V

{1,2}
α =

V
{1,2}
α, π

2

, V {1,2} = V
{1,2}
1 etc. For the purpose of error analysis for nonconforming FEM, we

define nonconforming P1 interpolation operator Π1,n
α,θ,h for functions on Tα,θ,h [13, 15]: For
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v ∈ H1(Tα,θ,h), Π1,n
α,θ,hv is a linear function such that

∫

ei

(Π1,n
α,θ,hv)(s)ds =

∫

ei

v(s)ds (i = 1, 2, 3). (3.2.5)

For simplicity, we will often use Π1,n instead of Π1,n
α,θ,h, where the subscript is omitted.

In the same way as we define Ci(α, θ, h) (0 ≤ i ≤ 5), let us consider several other

positive constants for the purpose of estimating the interpolation operator mentioned

above,

CJ(α, θ, h)= sup
v∈V J

α,θ,h
\{0}

‖v‖Tα,θ,h

|v|1,Tα,θ,h

(J = {1, 2}, {1, 2, 3}), (3.2.6)

C{4,n}(α, θ, h)= sup
v∈V 4,n

α,θ,h
\{0}

|v|1,Tα,θ,h

|v|2,Tα,θ,h

, C{5,n}(α, θ, h) = sup
v∈V 4,n

α,θ,h
\{0}

‖v‖Tα,θ

|v|2,Tα,θ

. (3.2.7)

We will again use abbreviated notations CJ(α, θ) = CJ(α, θ, 1), CJ(α) = CJ(α, π/2),

CJ = CJ(1) and also CJ,α,θ := CJ(α, θ) for every possible subscript J .

By a simple scale change, we can easily find that CJ(α, θ, h) = hCJ(α, θ) (J 6= {5, n})
and C{5,n}(α, θ, h) = h2C{5,n}(α, θ). Now, by noting v−Π1,n

α,θ,hv ∈ V 4,n
α,θ,h for v ∈ H2(Tα,θ,h),

we can easily have the popular interpolation error estimates on Tα,θ,h: [13, 15].

|v − Π1,n
α,θ,hv|1 ≤ C{4,n}(α, θ)h|v|2, ∀v ∈ H2(Tα,θ,h) , (3.2.8)

‖v − Π1,n
α,θ,hv‖ ≤ C{5,n}(α, θ)h

2|v|2, ∀v ∈ H2(Tα,θ,h) . (3.2.9)

Below, we show some fundamental properties of the constants.

Lemma 3.2.1. For the constant CJ(α, θ), we have

C{4,n}(α, θ) ≤ C0(α, θ), C{5,n}(α, θ) ≤ C0(α, θ)C{1,2,3}(α, θ) ≤ C0(α, θ)C{1,2}(α, θ) .

(3.2.10)

Proof. To show the former of (3.2.10), we notice that function in V 4,n
α,θ has the zero integral

on each edge, and then apply the Gauss formula to obtain

∫

Tα,θ

∂v

∂xi
dx = 0 for v ∈ V 4,n

α,θ (i = 1, 2) . (3.2.11)
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Hence we can easily obtain C{4,n}(α, θ) ≤ C0(α, θ) by noting the definition of C0(α, θ).

To derive the latter of (3.2.10), we notice that

C{5,n}(α, θ) = sup
v∈V 4,n

α,θ
\{0}

‖v‖Tα,θ

|v|2,Tα,θ

(3.2.12)

≤ sup
v∈V 4,n

α,θ
\{0}

‖v‖Tα,θ

|v|1,Tα,θ

· sup
v∈V 4,n

α,θ
\{0}

|v|1,Tα,θ

|v|2,Tα,θ

(3.2.13)

= C{4,n}(α, θ) C{1,2,3}(α, θ) . (3.2.14)

By further noticing that C{1,2,3}(α, θ) ≤ C{1,2}(α, θ), we prove the latter of (3.2.10).

Also notice that an estimate possibly rougher than the latter of equation (3.2.10) is

C{5,n}(α, θ) ≤ C0(α, θ) mini=1,2,3 Ci(α, θ) by utilizing the relation C{1,2,3}(α, θ) ≤ mini=1,2,3Ci(α, θ).

Thus we can give quantitative interpolation estimates (3.2.8) and (3.2.9), if we succeed

in evaluating or bounding the constants CJ(α, θ)’s explicitly for all possible J . Among

them, C0(α, θ) and C{1,2}(α, θ) are important as may be seen from (3.2.10). Just as we

did in Chapter 2, we execute analogous analysis to show the following properties for the

newly introduced constants:

Lemma 3.2.2. The constants Ci(α)’s (J = {1, 2}, {1, 2, 3}, {4, n}, {5, n}) are continuous

with respect to variable α. Moreover, except for C{4,n}(α), these constants are strictly

monotonically increasing with respect to α. (Numerical computations suggest that the

constant C{4,n}(α) to be monotonically increasing on α, while it has not been proved yet.)

The dependence of these constants on α and θ is given as follows:

ψJ(θ)CJ(α) ≤ CJ(α, θ) ≤ φJ(θ)CJ(α) (J = {1, 2}, {1, 2, 3}, {4, n}, {5, n}) , (3.2.15)

where





φJ(θ) =
√

1 + | cos θ|, ψJ(θ) =
√

1 − | cos θ| (J = {1, 2}, {1, 2, 3}),

φ{4,n}(θ) = (1 + | cos θ|)/
√

1 − | cos θ|,

ψ{4,n}(θ) = (1 − | cos θ|)/
√

1 + | cos θ|,

φ{5,n}(θ) = 1 + | cos θ| , ψ{5,n}(θ) = 1 − | cos θ| .
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As a result, the interpolation by the nonconforming P1 triangle is robust to the distor-

tion of Tα,θ. This fact does not necessarily imply the robustness of the final error estimates

for u− uh, since analysis of the Fortin interpolation has not been performed yet.

Remark 3.2.1. Instead of Π1,n
α,θ,h, it is also possible to consider an interpolation operator

using the function values at midpoints of edges. Such an operator is definable for contin-

uous functions over T α,θ,h, but not so for general functions in H1(Tα,θ,h). Moreover, its

analysis would be different from the one for Π1,n
α,θ,h.

Determination of C{1,2}

From the preceding observations, we can give explicit upper bounds of various inter-

polation constants associated to the nonconforming P1 element, provided that the value

of C{1,2} is determined. This becomes indeed possible by adopting essentially the same

idea and techniques to determine C0 and C1(= C2):

Theorem 3.2.1. C{1,2} = C{1,2}(1, π/2, 1) is equal to the maximum positive solution of

the transcendental equation for µ:

1

2µ
+ tan

1

2µ
= 0 . (3.2.16)

The above implies that C{1,2} = 1
2
C1(=

1
2
C2), and hence is bounded as, with numerical

verification,

0.24641 < C{1,2} < 0.24647 . (3.2.17)

Remark 3.2.1. Thus 1/4 is a simple but nice upper bound. Numerically, we have C{1,2} =

0.2464562258 · · · .

Proof. By the use of the technique for determination of C0 and C1 = C2 in [27, 29], we

obtain the following equation for µ:

1 +
1

2µ
sin

1

µ
− cos

1

µ
= 0 , (3.2.18)

whose maximum positive solution is the desired C{1,2}. By the double-angle formulas, the

above is transformed into

(2 sin
1

2µ
+

1

µ
cos

1

2µ
) sin

1

2µ
= 0 . (3.2.19)

It is now easy to derive (3.2.16), and also to draw other conclusions by using the results

in [27, 29].
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3.3 Analysis of Fortin’s interpolation

This section is devoted to analysis of the Fortin interpolation operator ΠF
α,θ for each

Tα,θ [14]. First, let us introduce the following transformation between x = {x1, x2} ∈ Tα,θ

and x̂ = {x̂1, x̂2}:

x̂1 = x1 sin θ − x2 cos θ, x̂2 = x1 cos θ + x2 sin θ . (3.3.1)

For each q = {q1, q2} ∈ H(div;Tα,θ), we also consider the (contravariant) expression

q̂ = {q̂1, q̂2}:
q̂1 = q1 sin θ − q2 cos θ, q̂2 = q1 cos θ + q2 sin θ , (3.3.2)

for which we loosely use both x and x̂ as variables. The Raviart-Thomas type approximate

function qh = {qh1, qh2} are given, together with the expression for q̂h = {q̂h1, q̂h2}, by

{
qh1 = α1 + α3x1

qh2 = α2 + α3x2
,

{
q̂h1 = α1 sin θ − α2 cos θ + α3x̂1

q̂h2 = α1 cos θ + α2 sin θ + α3x̂2
. (3.3.3)

The Fortin interpolation q∗h = {q∗h1, q
∗
h2} = ΠF

α,θq for q ∈ H(div;Tα,θ)∩H
1

2
+δ(Tα,θ)

2(δ > 0)

is of the form in (3.3.3) and characterized by the conditions:
∫

e1

(q∗h2 − q2)ds =

∫

e2

(q̂∗h1 − q̂1)ds = 0,

∫

Tα,θ

div(q∗h − q)dx = 0, (3.3.4)

where q̂ for q and q̂∗h for q∗h are defined in (3.3.2),(3.3.3), respectively.

Let us now introduce another interpolation Π
{1,2}
α,θ q = q†h = {q†h1, q

†
h2} for the same q,

which is a constant vector function that satisfies only the former two conditions of (3.3.4).

Then we can have the L2 estimate:

‖q − ΠF
α,θq‖ ≤ ‖q − Π

{1,2}
α,θ q‖ +

‖div q‖
2
√

|Tα,θ|

(∫

Tα,θ

|x|2dx
)1/2

(3.3.5)

= ‖q − Π
{1,2}
α,θ q‖ +

√
1 + α cos θ + α2

24
‖div q‖ . (3.3.6)

Here we introduce another quantity CF,1 for later purpose,

CF,1(α, θ) :=

√
1 + α cos θ + α2

24
. (3.3.7)

To bound ‖q − Π
{1,2}
α,θ q‖, let us evaluate ‖q̂1 − q̂†h1‖ and ‖q2 − q†h2‖ by using C1(α, θ)

and C2(α, θ) and there is no difficulty to get the following theorem.
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Theorem 3.3.1. It holds for q = {q1, q2} ∈ H1(Tα,θ)
2 that

‖q − Π
{1,2}
α,θ q‖Tα,θ

≤ CF,2(α, θ)|q|1,Tα,θ
, (3.3.8)

CF,2(α, θ) :=
1√

2 sin θ

{
c21 + c22 + 2c1c2 cos2 θ + (c1 + c2)

√
c21 + c22 + 2c1c2 cos 2θ

}1/2

,

(3.3.9)

where ci presents Ci(α, θ) (i = 1, 2) for the purpose of abbreviation.

Remark 3.3.1. From (3.3.6) and (3.3.8), it is easy to derive the following estimate for

the Fortin interpolation operator ΠF
α,θ,h:

‖q − ΠF
α,θ,hq‖Tα,θ,h

≤ CF,1(α, θ) h‖div q‖Tα,θ,h
+ CF,2(α, θ)h|q|1,Tα,θ,h

, ∀q ∈ H1(Tα,θ,h)
2.

(3.3.10)

Because of the factor sin θ in (3.3.9), the maximum angle condition [1, 6, 29] works for es-

timate (3.3.8), and consequently for (3.3.10). On the other hand, the estimates for Π0
α,θ,h

and Π1,n
α,θ,h are free from such conditions as may be seen from (3.2.10) and the comments

there.

3.4 Summary of a priori error estimate

So far, we have introduced and analyzed local interpolation operators Π0
α,θ,h,Π

1,n
α,θ,h

and ΠF
α,θ,h. For each K ∈ T h, we can find an appropriate Tα,θ,h congruent to K under an

appropriate mapping ΨK : K ⇒ Tα,θ,h. Then it is natural to define the P1 nonconforming

interpolation operator Πnc
h : H1

0 (Ω) ⇒ V h by

(Πnc
h v)|K =

(
Π1,n

α,θ,h(v|K ◦ Ψ−1
K )
)
◦ ΨK (3.4.1)

for v ∈ H1
0 (Ω) and K ∈ T h. Similarly, the orthogonal projection operator Qh : L2(Ω) ⇒

Xh is related to Π0
α,θ,h, while the global Fortin operator ΠF

h is defined through ΠF
α,θ,h.

Concretely, function ΨK is the Piola transformation for 2D convariant vector fields [5].

We define {αK, θK , hK} by the parameters {α, θ, h} for each K ∈ T h. Also, we

introduce the global parameters

h∗ = max
K∈T h

hK, Ch
J := max

K∈T h
CJ(αK, θK) for all index J .
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Let us recall the interpolation operators mentioned in (3.1.13) and (3.1.14). By taking

Πh to be Πnc
h , we have the interpolation estimates in (3.1.14) as, for u ∈ H1

0 (Ω) ∩H2(Ω),





‖u− Πnc
h u‖ ≤ Ch

5h
2
∗|u|2 ≤ Ch

0C
h
{1,2}h

2
∗|u|2 ,

‖∇u−∇hΠ
nc
h u‖ ≤ Ch

4h∗|u|2 ≤ Ch
0 h∗|u|2 ,

‖∇u− ΠF
h ∇u‖ ≤ Ch

F,1h∗‖∆u‖ + Ch
F,2h∗|u|2 ,

and for g ∈ H1(Ω) + V h,

‖g −Qhg‖ ≤ Ch
0 h∗‖∇hg‖ .

Substituting the constants above into (3.1.15), we now obtain the computable a priori

error estimate as follows: given data f ∈ L2(Ω), we have

‖∇u−∇huh‖ ≤ h∗
{
Ch

0

2|u|22 +
(
Ch

F,2|u|2 + (Ch
0 + Ch

F,1)‖f‖
)2}1/2

. (3.4.2)

If f belongs to H1(Ω) as well, then

‖∇u−∇huh‖ ≤ h∗

{
Ch

0

2|u|22 +
(
Ch

F,2|u|2 + Ch
0

2
h∗|f |1 + Ch

F,1‖f‖
)2
}1/2

. (3.4.3)

Similarly, we can derive a computable estimate for ‖u− uh‖Ω in explicit form, which

is omitted here.

Remark 3.4.1. As we will see in the following chapters, relations such as (5.2.7), (5.2.10)

and (5.2.12) may suggest the possibility of finding interpolations for ∇u in W h other than

the one by the Fortin operator, which are free from the maximum angle condition [6].

However, ∇h(Πhu + αh), for example, is not shown to belong to W h, because we cannot

prove the inter-element continuity of normal components unlike ∇hûh. Our numerical

results show that the maximum angle condition is probably essential for the nonconforming

P1 triangle. See also [1] for related topics.

3.5 Asymptotic analysis of constants on narrow ele-

ment

In this section, we will investigate the behaviours of the constants C{i,n}(α)’s, (i = 4, 5),

when the shortest edge of triangle tends to be zero. The method to be used is almost the

same as those for the constants appearing in the case of the conforming FEM.
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As is well known, the constants C{4,n}(α, θ) and C{5,n}(α, θ) can be characterized by

the following variational problems:

λ{4,n}(α, θ) =
(
1/C{4,n}(α, θ)

)2
: Find u(6= 0) ∈ V 4,n

α,θ , and minimal λ > 0 such that

2∑

i,j=1

(∂iju, ∂ijv)T = λ(∇u,∇v)T , ∀v ∈ V 4,n
α,θ . (3.5.1)

λ{5,n}(α, θ) =
(
1/C{5,n}(α, θ)

)2
: Find u(6= 0) ∈ V 4,n

α,θ and minimal λ > 0 such that

2∑

i,j=1

(∂iju, ∂ijv)T = λ(u, v)T , ∀v ∈ V 4,n
α,θ . (3.5.2)

The existence of these CJ(+0) := limα→+0 CJ(α) (J = {4, n}, {5, n}) is easy to see

by considering the boundedness of the constants over (0, 1] and the compactness theories

such as Rellich’s theorem. Let us introduce two new quantities λ{4,n}(+0) := C−2
{4,n}(+0)

and λ{5,n}(+0) := C−2
{5,n}(+0) and also a subspace of V {1,2,3},

W nc(T ) := {v ∈ V 4,n|∂2v = 0} . (3.5.3)

From the Lemma 2.5.1, we see the function u(x1, x2) ∈ W nc(T ) can be identified with

a single variable one û(x1). In the following, the symbol u(x) ∈ W nc(T ) is just u(x) :=

u(x1, x2) = û(x1), u
(1)(x) := dû(x1)/dx1 and u(2)(x) := d2û(x1)/dx

2
1.

We can show that these two constants are characterized by the following eigenvalue

problems:

Problem for C{4,n}(+0): Find minimum λ > 0 and u ∈ W nc(T ) \ {0} such that

(∂11u, ∂11v)T = λ(∂1u, ∂1v)T , ∀v ∈ W nc(T ) , (3.5.4)

or {
(u(2)(1 − x))(2) = −λ(u(1)(1 − x))(1) + C,

u(0) =
∫ 1

0
u(t)dt = u(2)(0) = u(2)(1) = 0 ,

(3.5.5)

where C is an unknown constant to be determined. By using the hyper-geometric func-

tions, the general solution of the ordinary differential equation here can be presented

63



by

u(x) = c1 + c2(1 − x)2
2F3(1, 1;

3

2
,
3

2
, 2;−λ(1 − x)2

4
)

+c3

(
(1 − x) − 1

12
(1 − x)3

2F3(1,
3

2
; 2, 2,

5

2
;−λ(1 − x)2

4
)

)

+C
1

12λ1/2
(1 − x)3

2F3(1,
3

2
; 2, 2,

5

2
;−λ(1 − x)2

4
) (3.5.6)

with proper selection of ci’s , C and λ to make u satisfy the conditions in (3.5.5). Nu-

merical computations show that

λ{4,n}(+0) ≈ 14.682, C{4,n}(+0) ≈ 0.26098 . (3.5.7)

By taking u := x(x− 2/3), we can easily obtain an upper bound for λ{4,n}(+0) as 18.

Problem for C{5,n}(+0): Find minimum λ > 0 and u ∈ W nc(T ) \ {0} such that

(∂11u, ∂11v)T = λ(u, v)T , ∀v ∈ W nc(T ) , (3.5.8)

or {
(u(2)(1 − x))(2) = λ(1 − x)u+ C

u(0) =
∫ 1

0
u(t)dt = u(2)(0) = u(2)(1) = 0 .

(3.5.9)

The general solution in the form of hyper-geometric form is

u(x) = c1 0F3(;
1

2
,
3

4
,
3

4
;
λ(1 − x)4

256
) + c2 (1 − x) 0F3(;

3

4
, 1,

5

4
;
λ(1 − x)4

256
)

+ c3 (1 − x)2
0F3(;

5

4
,
5

4
,
6

4
;
λ(1 − x)4

256
)

+ C
λ

12
(1 − x)3

1F3(1;
5

4
,
3

2
,
3

2
,
7

4
;
λ(1 − x)4

256
) (3.5.10)

with proper selection of ci’s and λ to make u satisfy the conditions of Eq.(3.5.9). Also

numerical computations show that

λ{5,n}(+0) ≈ 428.31, C{5,n}(+0) ≈ 0.048319 . (3.5.11)
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Sketch of determining λ{4,n}(+0)

The process of determining λ{4,n}(+0) is analogous to the one in Theorem 2.5.3. Here

we only show the sketch. Before going into further discussion, let us recall the Rayleigh

quotient defined by equation (2.3.3) for function v ∈ V 4,n over T (= T1,π/2,1):

R̂(4)
α (v) :=

aα(v)

bα(v)
=

‖∂11v‖2
T + 2α−2‖∂12v‖2

T + α−4‖∂22v‖2
T

‖∂1v‖2
T + α−2‖∂2v‖2

T

, (3.5.12)

and λ{4,n} can be presented in the following form:

λ{4,n}(α) := inf
v∈V 4,n\{0}

R̂(4)
α (v) . (3.5.13)

On considering a special function ũ(x1, x2) = sin(2πx1) ∈ V 4,n, we can easily show that

λ{4,n}(α) = R̂(4)
αn

(un) ≤
|ũ|2,T

|ũ|1,T
<∞ . (3.5.14)

What we aim to show is that λ{4,n}(α) has a limit when α→ +0:

λ{4,n}(+0) = lim inf
αn→0

λ{4,n}(αn) = lim sup
αn→0

λ{4,n}(αn) . (3.5.15)

For any convergent sequence λ{4,n}(αn) → λ∗ as αn → +0, (0 < αn < 1), we will prove

that the limit λ∗ here is independent of the choice of {αn}.

For any λ{4,n}(α), let uαn
∈ V 4,n be one of the corresponding eigenfunctions, that is,

λ{4,n}(αn) = R̂(4)
αn

(uαn
) .

Here we also assume that bαn
(uαn

) = 1. The uniform boundedness ‖uαn
‖2,T is clear since

λ{4,n} is uniformly bounded. By the compactness theories in Sobolev spaces and the same

technique adopted in Theorem 2.5.3, we find there exists a sub-sequence of uαn
, which we

still denote by uαn
, that satisfies, when αn → +0,

{
uαn

⇀ u0 weakly in H2(Tα) ,
uαn

→ u0 strongly in H1(Tα) .

Since the limit u0 may be zero, we should discuss the following two cases separately.

lim
αn→+0

‖uαn
‖2,T = 0, or lim

αn→+0
‖uαn

‖2,T 6= 0 . (3.5.16)
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The former finally leads to the eigenvalue problem in equation (3.5.5), for which we

omit the proof here. For the second case, we define a new sequence {vn} = {α−1
n ∂2uαn

},
and will show that {vn} weakly convergences to v ∈ W nc(T ), which is the eigenfunction

corresponding to one of the eigenvalues of:
{

−(v(1)(x)(1 − x))(1) = λ
2
v(x) (1 − x) for x ∈ (0, 1) ,

∫ 1

0
(1 − x)v(x)dx = 0, v(1)(0) = 0 .

(3.5.17)

By numerical computations, we can show the problem above has the minimal eigenvalue

λ ≈ 2 × 3.83172 > 18. Hence we see the solution of this problem is not the required

eigenfunction since λ{4,n}(αn) < 18. One thing to be pointed out is that here the compu-

tations are executed by floating-point arithmetic. To give strict conclusion, we still need

the verified computation technique to guarantee the computational results.

In the following, we show how to deduce the eigenvalue problem (3.5.17) from the

assumption ‖u0‖2,T = 0, which is analogous to the 4th part of Theorem 2.5.3, or (4.3.2)

in our paper [28].

Let wn := α−1
n ∂2uαn

(n = 1, 2, ...). Then wn ∈ H1(T ) satisfies
∫

T

wn dx1dx2 = 0, for n = 1, 2, ...

Moreover,

‖∂11uαn
‖2

T + 2‖∂1wn‖2
T + α−2

n ‖∂2wn‖2 = λ{4,n}(αn) (n = 1, 2, ...) .

As λ{4,n}(αn) is uniformly bounded, {wn} is bounded in H1(T ) and ∂wn/∂x2 → 0 (n →
∞). Thus, by choosing a sub-sequence of {wn} and denoting it by the same notation for

simplicity, we can show the existence of w0 ∈ H1(T ) such that, for n→ ∞,

wn → w0 weakly in H1(T ) and strongly in L2(T ).

It is obvious that ∂w0/∂x2 = 0 a.e. on T , then we can identify w0 by a function depending

on only variable x1, which we still denote by w0(x1). Also, w0 still satisfies
∫

T

w0 dx1dx2 = 0 .

Let v∗ be an arbitrary function of variable x1 such that v∗ ∈ C∞([0, 1]). Notice that such

v∗ can be extended to the one over domain T , which is only depending on the variable

x1. For simplicity, we denote the extended one by the same symbol v∗.
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For the aforementioned v∗ ∈ C∞([0, 1]), define another function P1v
∗ of x1 by

(P1v
∗) (x1) = v∗(x1) −

∫ 1

0
(1 − s)v∗(s)ds
∫ 1

0
(1 − s)ds

· 1 . (3.5.18)

We take v(x1, x2) := (P1v
∗) (x1)·x2+g(x1), where g(x1) is selected to satisfy

∫ 1

0
g(x1)dx1 =

0 and
∫ 1

0
[(P1v

∗) (0) · x2 + g(0)] dx2 = 0. Hence, the function v belongs to V {1,2,3}, that is,

∫

ei

vds = 0 (i = 1, 2, 3) .

Considering the variational equation for wn together with the test function v given

above, we have

αn (
∂2uαn

∂x2
1

,
∂2v

∂x2
1

)T ,+2

(
∂wn

∂x1
,
∂ (P1v

∗)

∂x1

)

T

= λ{4,n}(αn)[αn(
∂un

∂x1

,
∂v

∂x1

)T + (wn, P1v
∗)T ] . (3.5.19)

Taking the limit of the equation (3.5.19) and noticing that ∂1 (P1v
∗) = ∂1v

∗, we find

that w0 in H1(T ) satisfies

2(
∂w0

∂x1

,
∂v∗

∂x1

)T = λ∗(w0, P1v
∗)T .

Now we obtain the following eigenvalue problem:

2

∫ 1

0

(1 − x1)
dw0

dx1

dv∗

dx1
dx1 = λ∗

∫ 1

0

(1 − x1)w0 (P1v
∗) dx1; ∀v∗ ∈ C∞([0, 1]).

From the arbitrariness of v∗ and the relation
∫ 1

0
(P1v

∗) (x1)(1−x1)dx1 = 0, we can deduce

that

2
d

dx1

[(1 − x1)
dw0

dx1

] + λ∗(1 − x1)w0(x1) = C(1 − x1) and
dw0

dx1

(0) = 0 . (3.5.20)

Considering the integration of the former ODE in (3.5.20) over (0, 1),we deduce that

C = 0. So the eigenvalue problem is just the one in equation (3.5.17).
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3.6 Estimate of interpolation constants in 3D case

As an extension of the results which we obtained in 2D case, we here consider the the

nonconforming finite element in 3-dimensional space, for which only partial results are

given. For further investigation, we still need much more efforts.

Let us consider the P1 nonconforming tetrahedral element space V h that is defined

over the subdivision of domain with tetrahedra. The function in V h is piecewise linear

function whose integrations on inter-element faces are continuous. To approximate the

homogeneous Dirichlet boundary conditions, the function in V h is forced to have vanishing

integration on boundary faces. In the following, we will consider and analyze an important

interpolation analogous to the 2D case.

Figure 3.2: Tetrahedron element K

Firstly, let us consider the tetrahedral element in 3D space. With t1, t2 and t3, the

vectors in R
3, we define a tetrahedron K (See Figure 3.2):

K = convex hull of {0, t1, t2, t3} with the boundary omitted. (3.6.1)

To orient the vectors t1, t2 and t3, we define the matrix M = (t1, t2, t3) and require

that det(M) > 0.

Let us denote the the nodes of K by O,A(t1), B(t2) and C(t3), and the faces f1(OAB),

f2(OBC), f3(OAB) and f4(ABC). The Cartesian coordinates of point in K denoted by

x = (x1, x2, x3).
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Introduction of interpolation operator Πnc
K

On tetrahedron K, which is supposed to be an open set, let Hm(K) denote the Sobolev

spaces of functions of L2(K) with distributional derivatives up to the order m. The norm

of u ∈ Hm(K) is written as ‖u‖Hm(K) or ‖u‖m,K and the standard semi-norm to be

|u|Hm(K) or |u|m,K. The L2 norm of u, ‖u‖L2(K), will be abbreviated as ‖u‖K or ‖u‖.
Given u ∈ H1(K), which may not be continuous on K, we consider the interpolation

operator Πnc
K , which maps u to a linear function Πnc

K u such that

∫

fi

(Πnc
K u− u) dS = 0 for 1 ≤ i ≤ 4 , (3.6.2)

where dS is the surface element on fi.

In the application of FEM, the following two kinds of interpolation error estimates are

widely used: Given u ∈ H2(K) (⊂ H1(K)), there exist constants Cnc
0 (K) and Cnc

1 (K),

which depend only on the geometry of K, such that,

‖u− Πnc
K u‖K ≤ Cnc

0 (K) |u|2,K , (3.6.3)

|u− Πnc
K u|1,K ≤ Cnc

1 (K) |u|2,K . (3.6.4)

The existence of these two constants are easy to prove. For simplicity, we will usually

write Cnc
i (K) as Cnc

i .

Let us introduce a subspace of Sobolev space H2(K):

V nc
0 (K) = {v ∈ H2(K)| v has the zero integration on each face.} . (3.6.5)

It is easy to check that u−Πnc
K u ∈ V nc

0 (K) and |u−Πnc
K u|2,K = |u|2,K. We then characterize

the optimal constants above by the Rayleigh quotients:

(1/Cnc
0 )2 := λnc

0 = inf
u∈V nc

0
(K)\{0}

|u|22,K

‖u‖2
K

, (3.6.6)

(1/Cnc
1 )2 := λnc

1 = inf
u∈V nc

0
(K)\{0}

|u|22,K

|u|21,K

. (3.6.7)

In addition, we consider the average interpolation ΠA
K: for u ∈ H1(K), ΠA

Ku is constant

function over K such that ∫

K

(ΠA
Ku− u)dx = 0 . (3.6.8)
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Let us introduce the constant CA(K) by

CA(K) := sup
u∈H1(K)\{0}

‖u− ΠA
Ku‖K

|u|1,K

, (3.6.9)

then we have the estimate for interpolation ΠA
K :

‖u− ΠA
Ku‖K ≤ CA(K)|u|1,K , (3.6.10)

where the optimal constant CA(K) is a kind of the Poincare constant. Such a constant

plays an important role in bounding the constants Cnc
0 and Cnc

1 , as will be shown below.

From the results in [32] and [11], where the latter one [11] corrected a mistake in the

former [32], we have

CA(K) ≤ diam(K)

π
, diam(K) = the diameter of K .

To give estimates to the constants Cnc
0 and Cnc

1 , we still need another several constants.

Let P be the power set of {1, 2, 3, 4}. Then define, for each index set I ∈ P \ {∅},

C−2
I (K) := λI = inf

u ∈ H1(K) \ {0}∫
fi
uds = 0, ∀i ∈ I.

|u|21,K

‖u‖2
K

. (3.6.11)

Thus, we have constants such as C{1}(K), C{2,3}(K), C{1,2,3,4}(K) and so on.

Upper bound for constants Cnc
0 (K) and Cnc

1 (K)

Theorem 3.6.1. The following etimates hold:

Cnc
1 (K) ≤ CA(K) , (3.6.12)

Cnc
0 (K) ≤ CA(K) · min

I∈P\{∅}
CI(K) . (3.6.13)

Proof. We first consider the inequality (3.6.12). For u ∈ V0(K), since the integration on

each face is zero and by the Green formula, each partial derivative ∂u/∂xi (i = 1, 2, 3)

satisfies ∫

K

∂u

∂xi
dx =

∑

k=1,2,3,4

∫

fk

u nids = 0; i = 1, 2, 3 , (3.6.14)
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where ni is the i-th component of the unit normal vector on the face fk. Hence,

‖ ∂u
∂xi

‖K ≤ CA(K)| ∂u
∂xi

|1,K (i = 1, 2, 3) . (3.6.15)

which lead to

|u|1,K ≤ CA(K)|u|2,K . (3.6.16)

For the second inequality, we should consider the following fact:

Cnc
0 (K) = sup

u∈V nc
0

\{0}

‖u‖K

|u|2,K

≤ sup
u∈V nc

0
\{0}

‖u‖K

|u|1,K

sup
v∈V nc

0
\{0}

|v|1,K

|v|2,K

.

As we can easily see

sup
u∈V nc

0
\{0}

‖u‖K

|u|1,K
≤ min

I∈P\{∅}
CI(K) ,

together with the inequality in (3.6.12), we can deduce the inequality (3.6.13).

Remark 3.6.1. In the two dimensional case, we can give concrete values to some con-

stants by using the so-called ”symmetry techniques”, i.e., the isosceles right triangle can be

extended to the unit square by reflection. However, in three dimensional case, such tech-

nique fails completely. So, we are planning to develop numerical method with a posteriori

estimates to obtain the upper and lower bounds for these constants.

Numerical results

In the case where the tetrahedron K is constructed by the convex hull of the canonical

unit vector e1, e2 and e3, we evaluate CA(K) by the finite element method with linear

tetrahedral elements, and obtain that

CA(K) ≈ 0.262 ,

which is compatible with the above mentioned theoretical one, that is, CA(K) ≤
√

2/π(≈
0.451).

3.7 Numerical results

3.7.1 Evaluation of constants C{4,n}(α, θ) and C{5,n}(α, θ)

Firstly, we perform numerical computations to see the actual dependence of various

constants on α and θ by adopting the conforming P1 element and a kind of discrete
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Kirchhoff plate bending element [26], the latter of which is used to deal with directly the

4-th order partial differential equations corresponding to C4(α, θ) and C5(α, θ). We obtain

numerical results for C4(α) and C5(α) (θ = π/2) together with their upper bounds. The

uniform triangulation of the entire domain Tα is adopted, that is, Tα is subdivided into

small triangles, all being congruent to Tα,π/2,h with, e.g., h = 1/20.

◦ C{4,n}(α)

+ C0(α)

◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦

+ + + + + + + + + + + + + + + + +
+

+
+

+

0 0.2 0.4 0.6 0.8 1
0.15

0.2

0.25

0.3

α

Figure 3.3: Numerically obtained graphs for C{4,n}(α) and its upper bound

Figure 3.3 illustrates the graphs of approximate values of C{4,n}(α) and C0(α) ver-

sus α ∈]0, 1], while Figure 3.4 shows similar graphs for C{5,n}(α) together with its upper

bounds C0(α)C{1,2}(α) and C0(α)C{1,2,3}(α). In both cases, the theoretical upper bounds

give fairly good approximations to the considered constants C{4,n}(α) and C{5,n}(α).

The asymptotic analysis result that C{4,n}(+0) = C0(+0) can also be oberserved in

the Figure 3.3. Meanwhile, the limit C{5,n}(+0) is different from C0(+0)C{1,2,3}(+0) =

C0(+0)C{1,2}(+0), although the numerical values are close to each other.

3.7.2 Computation for a priori error estimates

We test numerically the validity of our a priori error estimate for ‖∇u−∇huh‖. That

is, we choose Ω as the unit square {x = {x1, x2}; 0 < x1, x2 < 1} and f as f(x1, x2) =

sin πx1 sin πx2. So the solution is u(x1, x2) = 1
2π2 sin πx1 sin πx2. The N × N Friedrichs-

Keller type uniform triangulations (N ∈ N) is used for computations. In such situation,
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◦ C{5,n}(α)

4 C0(α)C{1,2,3}(α)

+ C0(α)C{1,2}(α)

◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦
◦

◦
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◦
◦

4 4 4 4 4 4
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4
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4
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Figure 3.4: Numerically obtained graphs for C{5,n}(α) and its upper bound

all the triangles are congruent to a right isosceles triangle T1,π/2,1/N , i.e., h∗ = h =

1/N . Moreover, we can use the following values or their upper bounds for the necessary

constants:

Ch
0 = C0 = 1/π, Ch

{1,2} = 1/4, Ch
{4,n} = 1/π, Ch

{5,n} = 1/12.

Figure 3.5 illustrates the comparison of the actual ‖∇u−∇huh‖ and its a priori esti-

mate based on our analysis. The difference is still large, but anyway our analysis appears

to give correct upper bounds and order of errors, i.e., O(h∗). In Chapter 5, we will con-

sider a kind of hypercircle-based a posteriori estimation, which gives relatively better error

estimate than the current one.
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slope= 1

◦ a priori estimate

∗ ||∇u −∇huh||
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Figure 3.5: Numerical results for ‖∇u−∇huh‖ and their order plots for h
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Chapter 4

Enclosing eigenvalue of Laplacian
and its application to evaluation of
error constants

In the preceding two chapters, we have introduced various constants related to error

estimation of both conforming and nonconforming FEMs. These constants are character-

ized by Rayleigh quotients and hence related to eigenvalue problems with various kinds of

constraints. For example, the constant C0(α, θ) is related to the first positive eigenvalue

of −∆ in the space over Tα,θ, where the function has zero integration over Tα,θ.

As we have already seen, we can give exact values or proper estimates for the constants

only in very rare cases, e.g., C0, C1 = C2. It is in fact very difficult to determine the

exact values of constants related to Tα,θ of general shape. On the other hand, we can

adopt the FEM to obtain approximate values for such constants as may be found in,

e.g., [4, 44, 29, 47], but their quantitative error estimates for the approximation are often

unavailable.

In this chapter, we will give quantitative a posteriori estimation for the evaluation of

Ci(α, θ)’s (0 ≤ i ≤ 3) by utilizing the piecewise linear FEM and the obtained estimates

for the constants. The basic idea adopted here can be found in many texbooks such as

that of Schultz[46]. To see the validity of the method in section 4.5, we will consider the

evaluation of the minimum eigenvalue of the Laplacian eigenvalue problems on disk under

the homogeneous Dirichlet condition.

At present, our approach gives only approximate or numerical boundings of the con-

stants, but they can be turned into mathematically correct ones provided that appropriate

numerical verification methods become available. Refer to [41, 38] for the interval com-
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putation method and the theories required by efficient verified computations.

4.1 Preliminaries

Let Ω be a bounded convex polygonal domain, which is in many cases the triangular

one Tα,θ. Let us also consider a closed linear subspace H1
s (Ω) of H1(Ω), which can be

finite-dimensional and satisfies

H1
s (Ω) 6= {0}, 1 /∈ H1

s (Ω), (4.1.1)

where 1 is the constant function of unit value in Ω. A typical example of such H1
s (Ω) is

H1
0 (Ω).

As a generalization of variational form (2.1.2), we consider the problem of finding

u ∈ H1
s (Ω), for a given f ∈ L2(Ω), such that

(∇u,∇v)Ω = (f, v)Ω, ∀v ∈ H1
s (Ω) . (4.1.2)

The uniqueness and existence of u in H1
s (Ω) are also trivial, so that we can define an

operator Gs by

Gs : f ∈ L2(Ω) → u ∈ H1
s (Ω) determined by (4.1.2) . (4.1.3)

As a generalization of the problem related to (2.2.18), let us also consider a minimiza-

tion problem for the Rayleigh quotient:

Rs(v) :=
|v|21,Ω

‖v‖2
Ω

; ∀v ∈ H1
s (Ω) \ {0} . (4.1.4)

The minimum actually exists and is positive under (4.1.1) as may be shown by the

compactness arguments. Moreover, denoting the minimum and the associated minimizer

by λ > 0 and u ∈ H1
s (Ω)\{0}, respectively, they satisfy the following variational equation:

(∇u,∇v)Ω = λ(u, v)Ω, ∀v ∈ H1
s (Ω) . (4.1.5)

By using Gs in (4.1.3), the present u ∈ H1
s (Ω) is shown to satisfy u = λGsu.

To apply the P1 FEM to the above two problems, we first introduce a regular family

of triangulations {T h}h>0 of Ω as we mentioned in Section 2.1, and then construct the

piecewise linear finite element space Sh ⊂ H1(Ω) for each T h as

Sh := {vh ∈ C(Ω)| vh|K is a linear function for each K ∈ T h} . (4.1.6)
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For u ∈ H2(Ω)
(
⊂ C(Ω)

)
, recall the definition the piecewise linear interpolation Π1

hu ∈ Sh

in (2.1.7):

(Π1
hu)(pi) = u(pi) for each vertex pi of T h . (4.1.7)

We will also use the parameters h = maxK∈T h hK, Ch
4 = maxK∈T h C4(αK, θK) and Ch

5 =

maxK∈T h C5(αK , θK) defined in Section 2.2. Then we have the following interpolation

estimates for the above u as was discussed in Section 2.2:

|u− Π1
hu|1,Ω ≤ Ch

4 h|u|2,Ω, ‖u− Π1
hu‖Ω ≤ Ch

5 h
2|u|2,Ω . (4.1.8)

To construct approximate problems to (4.1.2) and the minimization of (4.1.5), let us

consider the subspace Sh,s of Sh defined by

Sh,s := Sh ∩H1
s (Ω) , (4.1.9)

which we assume to be different from {0}. Of course, various other finite-dimensional

subspaces of H1
s (Ω) are available in place of Sh,s, but the above one is theoretically simple

and also practically favorable in many cases.

Then an approximation to (4.1.2) is to find uh ∈ Sh,s, for a given f ∈ L2(Ω), such that

(∇uh,∇vh)Ω = (f, vh)Ω, ∀vh ∈ Sh,s . (4.1.10)

The uniqueness and existence of uh in Sh,s are trivial, so that we can define an operator

Gh
s by

Gh
s : f ∈ L2(Ω) → uh ∈ Sh,s determined by (4.1.10) . (4.1.11)

Noticing that u = Gsf and uh = Gh
sf , we generalize the estimations in (2.1.5) and

(2.1.6) as below:

|Gsf −Gh
sf |1,Ω = min

vh∈Sh,s
|Gsf − vh|1,Ω , (4.1.12)

‖Gsf −Gh
sf‖Ω ≤ |Gsf −Gh

sf |1,Ω sup
g∈L2(Ω)\{0}

inf
vh∈Sh,s

|Gsg − vh|1,Ω

‖g‖Ω
. (4.1.13)

On the other hand, an approximation problem related to Rs(·) is to find the minimizer

in Sh,s\{0}. In this case, the existence of the minimum is again trivial, and the minimum

λh and an associated minimizer uh ∈ Sh,s \ {0} satisfy the relation analogous to (4.1.5):

(∇uh,∇vh)Ω = λh(uh, vh)Ω, ∀vh ∈ Sh,s . (4.1.14)

The following results are easy to derive but will play an essential role in our approach,

cf. e.g. Theorem 8.3 of [46].
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Lemma 4.1.1. Let λ and λh be respectively defined by λ = minv∈H1
s (Ω)\{0}R

s(v) and

λh = minv∈Sh,s\{0}R
s(v), and u ∈ H1

s (Ω) be an minimizer associated to λ such that

‖u‖Ω = 1. Then it holds that, for ∀vh ∈ Sh,s \ {0} with ‖u− vh‖ < 1,

λ ≤ λh ≤ λ+
|u− vh|21,Ω

(1 − ‖u− vh‖Ω)2
. (4.1.15)

The following results are also well known and will be used later, cf.[22]

Lemma 4.1.2. For the present Ω and a given f ∈ L2(Ω), consider the problem of finding

u ∈ H1(Ω) such that

(∇u,∇v)Ω = (f, v)Ω , ∀v ∈ H1(Ω) . (4.1.16)

Such u exists if and only if

(f, 1)Ω = 0 , (4.1.17)

and is unique up to an additive arbitrary constant function. Moreover, u ∈ H 2(Ω) with

|u|2,Ω ≤ ‖∆u‖Ω = ‖f‖Ω . (4.1.18)

Remark 4.1.1. To assure the uniqueness to u, we can for example impose the condition

(u, 1)Ω = 0 on u. The present problem corresponds to the one for the Poisson equation

with the homogeneous Neumann boundary condition:

−∆u = f in Ω,
∂u

∂n
= 0 on ∂Ω . (4.1.19)

Lemma 4.1.3. Given data f ∈ L2(Ω), the problem of finding u ∈ H1
0 (Ω) such that

(∇u,∇v)Ω = (f, v)Ω , ∀v ∈ H1
0 (Ω), (4.1.20)

has a unique solution. Moreover, u ∈ H2(Ω) ∩H1
0 (Ω) with

|u|2,Ω ≤ ‖∆u‖Ω = ‖f‖Ω . (4.1.21)

4.2 A posteriori estimation of C0(α, θ)

We first give a posteriori estimates to C0(α, θ). In this case, Ω = Tα,θ and H1
s (Ω) =

V 0
α,θ. Let us define an orthogonal projection operator P 0 : L2(Tα,θ) → L0

2(Tα,θ) := {g ∈
L2(Tα,θ)|(g, 1)Tα,θ

= 0} by

P 0 g := g −
∫

Tα,θ
g(x)dx

∫
Tα,θ

dx
= g − (g, 1)Tα,θ

|Tα,θ|
, ∀g ∈ L2(Tα,θ), (4.2.1)

78



where |Tα,θ| denotes the measure of Tα,θ. We can easily show that P 0 is also an orthogonal

projection operator from H1(Tα,θ) to V 0
α,θ, defined in (2.2.3), with respect to the standard

inner product of H1(Tα,θ). Notice that the present Gs, G
h
s and Sh are now those corre-

sponding to domain Ω = Tα,θ. Denote by Sh
Tα,θ

the finite element space Sh over domain

Ω = Tα,θ. Then we find that Sh
Tα,θ

contains the constant functions and the Sh,s for the

present H1
s (Ω) is

Sh,0
Tα,θ

= P 0Sh
Tα,θ

. (4.2.2)

From now on, we will omit the subscript Tα,θ for the norms, semi-norms and inner

products related to the domain Tα,θ.

Noting that ∇P 0v = ∇v and (f, P 0v) = (P 0f, v) for v ∈ H1(Tα,θ), equation (4.1.2)

for the present u ∈ V 0
α,θ becomes

(∇u,∇v) = (P 0 f, v), ∀v ∈ H1
0 (Tα,θ) , (4.2.3)

which reduces to (4.1.16) under (4.1.17). Likewise, Eq.(4.1.5) for the present {λ, u} ∈
R ×

(
V 0

α,θ \ {0}
)

becomes

(∇u,∇v) = λ(u, v), ∀v ∈ H1
0 (Tα,θ) , (4.2.4)

since P 0u = u. By Lemma 4.1.2, the above u belongs to H2(Tα,θ) ∩ V 0
α,θ with

|u|2 ≤ λ‖u‖ . (4.2.5)

The same way, we denote by λh,0 the minimum eigenvalue λh in equation (4.1.14), where

Sh,s is relaced by Sh,0.

Under the preceding preparations, let us apply Lemma 4.1.1 to estimate λh,0 in terms

of the one λ0 of (4.1.5) or (4.2.4). The minimizer associated to λ0 is denoted by u0 with the

normalization condition ‖u0‖ = 1. As vh in (4.1.15) can be taken arbitrarily, we can choose

various candidates from Sh,0. One possibility is to utilize the interpolation Π1
hu

0
(
∈ Sh

α,θ

)

of u0. Unfortunately, it may be outside of Sh,0, but its projection P 0(Π1
hu

0) can be used

thanks to (4.2.2). By taking advantage of properties of the orthogonal projection (4.2.1),

we find that

|u0 − P 0 (Π1
hu

0)|1 = |u0 − Π1
hu

0|1, (4.2.6)

‖u0 − P 0
(
Π1

hu
0
)
‖ = ‖P 0

(
u0 − Π1

hu
0
)
‖ ≤ ‖u0 − Π1

hu
0‖ . (4.2.7)
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Using (4.1.8) and (4.2.5), we can evaluate the above in terms of h, λ0, Ch
4 , and Ch

5 .

Unfortunately, we have not obtained sufficiently accurate theoretical upper bounds for

Ch
5 as was noted in Section 2.4.1. So we should avoid the use of such a constant from

theoretical standpoint.

Another possibility is to use ũ0
h := λ0Gh,0u0, which is surely in Sh,0 and is suggested

by the identity u0 = λ0G0u0. For this choice, we have

|u0 − ũ0
h|1 ≤ |u0 − P 0

(
Π1

hu
0
)
|1 = |u0 − Π1

hu
0|1 , (4.2.8)

‖u0 − ũ0
h‖ ≤ |u0 − ũ0

h|1 sup
g∈L2(Tα,θ)\{0}

inf
vh∈Sh,0

|G0 g − vh|1
‖g‖ . (4.2.9)

In this case, we only need the estimate in H1 semi-norm (4.1.8), that is , the values of h,

λ0 and Ch
4 . Hence we avoid the use of Ch

5 .

Based on the above considerations, we have now the following two a priori error

estimates.

Lemma 4.2.1. (A priori estimates for λh,0) Let λ0 and λh,0 be defined as above. Then if

Ch
5 h

2λ0 < 1,

λ0 ≤ λh,0 ≤ λ0 +
(Ch

4λ
0)2

(1 − Ch
5 h

2λ0)2
. (4.2.10)

Similarly, if Ch
4

2
h2λ0 < 1, then

λ0 ≤ λh,0 ≤ λ0 +
(Ch

4λ
0)2

(1 − Ch
4

2
h2λ0)2

. (4.2.11)

Remark 4.2.1. In actual application of the above estimates, where the exact value of

Ch
4 (Ch

5 resp.) may not be available, we can use an appropriate upper bound C̃h
4 (C̃h

5 resp.).

From the considerations in Section 2.4.1 for concrete values of these constants, (4.2.10)

would give a better bounding than (4.2.11), if an accurate upper bound C̃h
5 of Ch

5 becomes

available.

Let us define two functions related to (4.2.11) and (4.2.10):

ψ0,1(t) := t +
(Ch

4 t)
2

(1 − Ch
5 h

2t)2
(0 < t <

1

Ch
5 h

2
) , (4.2.12)
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ψ0,2(t) := t+
(Ch

4 t)
2

(1 − Ch
4

2
h2t)2

(0 < t <
1

Ch
4

2
h2

) , (4.2.13)

where t is the variable, while other quantities are considered just parameters. Since these

two functions are continuous and monotonically increasing on their domains of definition,

they have their inverse functions, ψ−1
0,1 and ψ−1

0,2 , to be monotonically continuous over in

(0,∞). Then we can easily obtain the following a posteriori estimates for bounding λ0 by

numerically obtained λh,0.

Theorem 4.2.1. (A posteriori estimates for λ0) Let λ0, λh,0, ψ−1
0,1 and ψ−1

0,2 be defined as

above. Then it holds that

ψ−1
0,1(λ

h,0) ≤ λ0 ≤ λh,0 if λh,0 <
1

Ch
5 h

2
, (4.2.14)

ψ−1
0,2(λ

h,0) ≤ λ0 ≤ λh,0 if λh,0 <
1

Ch
4

2
h2

. (4.2.15)

Proof. From the preceding theorem, we have for example, (0 <)λh,0 ≤ ψ0,1(λ
0) ≤ ψ0,1(λ

h,0)

if λh,0 < 1/(Ch
5 h

2). Then (4.2.14) follows immediately by operating ψ−1
0,1 to this inequality,

while (4.2.15) can be obtained similarly.

It is now straightforward to obtain boundings to the constant C0(α, θ). For example,

we have from (4.2.14) that

1/
√
λh,0 ≤ C0(α, θ) ≤ 1/

√
ψ−1

0,1(λ
h,0) if λh,0 <

1

Ch
5 h

2
. (4.2.16)

Remark 4.2.2. The method above to give a posteriori estimate for λ0 can be also used to

give estimates for the classical Dirichlet type eigenvalue problem over the bounded convex

domain Ω: Find the smallest λ ∈ R and associated u ∈ H1
0 (Ω) \ {0} such that

(∇u,∇v) = λ(u, v), ∀v ∈ H1
0(Ω) . (4.2.17)

For this purpose, we need to define the finite dimensional space Sh ∩ H1
0 (Ω) and adopt

the result for the regularity of solution as in Lemma 4.1.3, while the projection operator

similar to P 0 is not necessary since Π1
hu ∈ Sh ∩H1

0 (Ω).
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4.3 A posteriori estimation of Ci(α, θ)’s (i = 1, 2, 3)

Secondly, we give a posteriori estimates to Ci(α, θ)’s (i = 1, 2, 3). In current cases,

the notations defined in preliminary have concrete forms: Ω = Tα,θ, H
1
s (Ω) = V i

α,θ and

Sh,s = Sh,i := Sh ∩ V i
α,θ (i = 1, 2, 3). Also, let us define an operator P i : H1(Tα,θ) →

V i
α,θ(i ∈ {1, 2, 3}) by

P iv := v − 1

|ei|

∫

ei

v ds, ∀v ∈ H1(Tα,θ), (4.3.1)

where |ei| denotes the length of edge ei. Unlike P 0, the above operators are not well

defined over L2(Tα,θ), but the following relations similar to (4.2.2) still hold:

Sh,i = P i Sh (1 ≤ i ≤ 3) . (4.3.2)

Let p(i)’s (i = 1, 2, 3) be the three vertexes of triangle Tα,θ, that is,

p(1) = O(0, 0), p(2) = A(1, 0), p(3) = B(α cos θ, α sin θ) .

Suggested by [36], we introduce quadratic functions fi’s (1 ≤ i ≤ 3) of x = (x1, x2) by

fi(x1, x2) :=
|ei|

4|Tα,θ|
|x− p(i)|2 , (4.3.3)

where |x− p(i)| denotes the Euclidean distance between x and p(i).

These functions are sufficiently smooth and satisfy

∂fi

∂n
= δij on ej , ∀i, j ∈ {1, 2, 3} .

Then, for each v ∈ H1(Tα,θ), we find that

∫

ei

vds = (∇fi,∇v) + (∆fi, v) ,

so that (4.3.1) can be rewritten by

P i v := v − 1

|ei|
[(∇fi,∇v) + (∆fi, v)] , ∀v ∈ H1(Tα,θ) .

Similarly to (4.2.3), (4.1.5) for the present u ∈ V i
α,θ becomes

(∇u,∇v) = (f, P i v), ∀v ∈ H1(Tα,θ) , (4.3.4)
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which can be rewritten by

(∇(u+
(f, 1)

|ei|
fi),∇v) = (f − (f, 1)

|ei|
∆fi, v) , ∀v ∈ H1(Tα,θ) . (4.3.5)

By Lemma 4.1.2, we find that u+ (f,1)
|ei| fi ∈ H2(Tα,θ) with

∣∣∣∣u+
(f, 1)

|ei|
fi

∣∣∣∣
2

≤ ‖f − (f, 1)

|ei|
∆fi‖ . (4.3.6)

Hence, by using the triangle and Schwarz inequalities, we have

|u|2 ≤ ‖f‖ +
(f, 1)

|ei|
(|fi|2 + ‖∆fi‖) ≤ ‖f‖

{
1 +

√
|Tα,θ|
|ei|

(|fi|2 + ‖∆fi‖)
}
. (4.3.7)

Clearly, it holds that

|Tα,θ| =
α

2
sin θ, |e1| = 1, |e2| = α, |e3| =

√
1 + α2 − 2α cos θ,

|fi|2 =

√
2

2
‖∆fi‖, ∆fi =

|ei|
|Tα,θ|

,

so that we have, for i ∈ {1, 2, 3},

|u|2 ≤ (2 +
√

2/2)‖f‖ . (4.3.8)

Also, the eigenvalue problem for the present {λ, u} ∈ R×
(
V i

α,θ \ {0}
)
(1 ≤ i ≤ 3) becomes

(∇u,∇v) = λ(u, P i v), ∀v ∈ H1(Tα,θ) . (4.3.9)

Thus, we can utilize the results for (4.3.4) by taking f in (4.3.4) as λu in (4.3.9).

The approximation problems corresponding to 4.1.10 and 4.1.14 are also given by using

Sh,i’s (1 ≤ i ≤ 3). Then, just like Lemma 4.1.1 and Theorem 4.2.1 for C0(α, θ), we have

the following results for Ci(α, θ)’s (1 ≤ i ≤ 3).

Theorem 4.3.1. [ A priori and a posteriori estimates for λh,i, (i = 1, 2, 3) ] For each

i ∈ {1, 2, 3}, let λi and λh,i be the smallest eigenvalues of (4.1.5) and (4.1.14) in the

case where H1
s (Ω) = V i

α,θ and Sh,s = Sh,i cf.(4.3.2). Then, if (MCh
4 h)

2 < 1 with M :=

2 +
√

2/2, it holds that

λi ≤ λh,i ≤ λi +
(MCh

4 λ
i)2

(1 −M2(Ch
4 )2h2λi)2

, (4.3.10)
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and, if λh,i < 1/(MCh
4 h)

2 < 1,

ψ−1
i (λh,i) ≤ λi ≤ λh,i , (4.3.11)

where

ψi(t) := t +
(MCh

4 t)
2

(1 −M2(Ch
4 )2h2t)2

(
0 < t <

1

(MCh
4 h)

2
; 1 ≤ i ≤ 3

)
, (4.3.12)

which is continuous and monotonically increasing.

Remark 4.3.1. Because of the factor M ≈ 2.7071 · · · , efficiency of (4.3.10) is worse than

that of (4.2.10). In the present case, estimates corresponding to (4.2.11) and using Ch
5 do

not appear to be fully effective unlike those in the preceding subsection. This is attributed

to the fact that we cannot at present obtain desirable estimates for ‖u− P i (Π1
hu) ‖ (∀u ∈

V i
α,θ ∩H2(Tα,θ); 1 ≤ i ≤ 3), since P i is not definable over L2(Tα,θ) and hence we cannot

take advantage of the best approximation property with respect to the L2 norm.

Remark 4.3.2. In the procedure of obtaining (4.3.8), we find that the coefficient M :=

(2+
√

2/2) depends on the selection of fi’s, which reminds us of finding improved functions

for smaller M . We leave this work to future research.

Remark 4.3.3. By using the similar techniques, we may further give a posteriori estimate

for constants such as C{1,2} and C{1,2,3}, where we need a priori estimate for the eigenvalue

problem: Find {λ, u} ∈ R ×
(
V

{1,2,3}
α,θ \ {0}

)
such that

(∇u,∇v) = λ(u, v) , ∀v ∈ V {1,2,3}(Tα,θ) .

To deal with the constraint conditions associated to V {1,2,3}, we need to specify the func-

tions like fi’s in (4.3.3), which is not so obvious. However, such associated functions may

be constructed in the finite element spaces, although we do not discuss such topics here.
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4.4 Numerical results for a posteriori estimates for

constants

To show the validity of the a posteriori estimates developed in the previous sections,

we will take the constants C0 = C0(1, π/2) and C1 = C1(1, π/2) as examples and perform

numerical evaluations. With no further efforts, the quantitative estimates for other con-

stants Ci(α, θ)’s (i = 0, 1, 2, 3) can also be done similarly.

We denote the associated eigenvalues by λ0 = C−2
0 and λ1 = C−2

1 and show the results

as below.

N bounds for λ0 by ψ−1
0,1 bounds for λ0 by ψ−1

0,2 bounds for λ1 by ψ−1
1

2 5.9890 < λ0 < 11.7155 6.5550 < λ0 < 11.7155 λ1 < 4.3071†

3 7.8874 < λ0 < 10.7213 8.1463 < λ0 < 10.7213 1.9780 < λ1 < 4.2102

4 8.7512 < λ0 < 10.3570 8.8616 < λ0 < 10.3570 2.6006 < λ1 < 4.1713

8 9.6055 < λ0 < 9.9946 9.6143 < λ0 < 9.9946 3.6537 < λ1 < 4.1304

16 9.8054 < λ0 < 9.9012 9.8060 < λ0 < 9.9012 3.9982 < λ1 < 4.1196

32 9.8537 < λ0 < 9.8776 9.8537 < λ0 < 9.8776 4.0864 < λ1 < 4.1168

64 9.8656 < λ0 < 9.8716 9.8656 < λ0 < 9.8716 4.1085 < λ1 < 4.1161

(∞) λ = π2 = 9.869604 . . . λ1 ≈ 4.115858

† In this case, the obtained λh,0 is outside the domain of definition for ψ−1
1 .

Table 4.1: A posteriori estimate for λ0 and λ1

Table 4.1 gives the boundings for λ0 based on (4.2.15 ) and (4.2.14) of Theorem 4.2.1

and those for λ1 based on (4.3.11) of Theorem 4.3.1, where the conforming P1 finite element

method is adopted. We tested several meshes, which are uniform ones composed of small

triangles similar to the entire domain T (See Figure 4.1). In practical computations, the

values for the important parameters Ch
4 and Ch

5 and h are specified below as

Ch
4 < Ĉh

4 = 0.5, Ch
5 < Ĉh

5 = 0.17, h = 1/N,

where N is the number of subdivision for the mesh, for example, N = 4 in the Figure 4.1.

Notice that Ĉh
4 = 0.5 is a theoretical upper bound of Ch

4 , but the one Ĉh
5 is a numerically
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obtained approximate upper bound of Ch
5 at present. We tested (4.2.14) only to see its

effectiveness experimentally.

Figure 4.1: Triangulation of T (N = 4)

We can observe that the present simple methods can actually bound C0 and C1 from

both above and below. As is expected, (4.2.14) gives better lower bounds than (4.2.15)

for coarser meshes. Table 4.1 also shows that the lower bounds obtained for C1 are in

general rougher that those for C0. This is probably attributed to the existence of the

factor M = 2 +
√

2/2. Even in this case, we can obtain reasonable results by mesh

refinement.

4.5 A posteriori estimates for eigenvalue of Laplacian

operator over disk

As an application of the approach we constructed in the previous sections, here we

will try to evaluate of the first eigenvalue of Laplacian over the unit disk.

Let λ(> 0) be the one characterized by the eigenvalue problem over unit disk Ω: Find

minimal λ > 0 and u ∈ H2(Ω) \ {0} such that

−∆u = λu in Ω, u = 0 on ∂Ω . (4.5.1)

As we can show, the eigenvalue λ is the square of the first zero of the Bessel function J0,

which will help us test the precision of the estimation.

As the circular boundary cannot be presented by polygon, we use the regular n-

polygonal domain Ωn (Figure 4.2) to approximate the disk, and then consider the de-

termination of λn of the eigenvalue problem over there: Find minimal λn > 0 and
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Figure 4.2: Circumscribed regular hexagonal polygon Ω6
c (left) and inscribed one Ω6

i

(right) associated to unit circle

u ∈ H2(Ω) \ {0} such that,

−∆u = λnu in Ωn, u = 0 on ∂Ωn . (4.5.2)

Here, Ωn can be either Ωn
i or Ωn

c , which are the inscribed n-polygon and the circumscribed

one of the unit disk, respectively.

By considering the Rayleigh quotient and the extension theory of Sobolev spaces, we

can show that the exact solution of eigenvalue problem (4.5.2) over an inscribed regular

n-polygon Ωn
i of the unit disk can give an upper bound for λ in (4.5.1), while the one on

circumscribed polygon Ωn
c will supply a lower bound. For each polygonal domain, we can

apply the piecewise linear FEM to evaluate the eigenvalues λn.

As for meshes, we first triangulate the right triangle ∆OAB with OA = 1 and AB =

tan π/n and ∠OAB = π/2 just as we did for T and Tα in the preceding problems by

dividing each edges uniformly into N segments. Notice that by a reflection and rotations,

we can immediately obtain whole meshes for Ωn
c , see Figure 4.3. The constants in Theorem

4.2.1 can be taken as

C̃h
4 = 0.5, h =

{ √
3/N if n = 3

1/N if n ≥ 4
,
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Figure 4.3: Meshes for n-polygonal domains Ωn with N = 5, n = 3, 4, 5, 10

where α ≤ 1 in all cases.

We solve the problem of (4.5.2) with Ωn = Ωn
c , and summarize the results in Table

4.2, from which we can experimentally see the effectiveness of our bounding method.
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n N bounds for λ N bounds for λ N bounds for λ

3 5 3.9082 < λ < 4.4963 10 4.2688 < λ < 4.4147 100 4.3853 < λ < 4.3868

4 5 4.7700 < λ < 5.0211 10 4.8954 < λ < 4.9569 100 4.9344 < λ < 4.9351

5 5 5.0049 < λ < 5.2826 10 5.1590 < λ < 5.2273 100 5.2075 < λ < 5.2082

6 5 5.1387 < λ < 5.4323 10 5.3114 < λ < 5.3839 100 5.3659 < λ < 5.3667

7 5 5.2220 < λ < 5.5257 10 5.4078 < λ < 5.4831 100 5.4666 < λ < 5.4674

8 5 5.2774 < λ < 5.5879 10 5.4727 < λ < 5.5498 100 5.5346 < λ < 5.5354

9 5 5.3160 < λ < 5.6313 10 5.5185 < λ < 5.5969 100 5.5827 < λ < 5.5836

10 5 5.3440 < λ < 5.6628 10 5.5520 < λ < 5.6313 100 5.6181 < λ < 5.6190

Table 4.2: A posteriori estimates for the first eigenvalue λ associated to Ωn
c
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Chapter 5

Quantitative a posteriori error
estimates for FEM solutions of
Poisson’s equation

In the past four chapters, we have paid efforts to give quantitative estimates to various

error constants. As we noted at the beginning of this dissertation, the concrete values

or upper bounds will enable quantitative error estimation for the FEM solutions of PDE

problems. In this chapter, by applying the obtained results for the error constants, we

consider a hypercircle-based a posteriori error estimation method for Poisson’s equation,

which gives computable estimates for the FEM solutions.

Also, to demonstrate the feasibility of this method, we will examine Poisson’s equation

over L-shaped domain and propose quantitative error estimation for its FEM solutions.

5.1 Hypercircle-based a posteriori error estimates

We reconsider the problem of Poisson’s equation over a polygonal domain Ω, which

may be nonconvex one, with regular familiy of triangulation {T h} (h > 0). For each

T h, we consider the lowest-order Raviart-Thomas triangular finite element space W h ⊂
H(div,Ω), cf. Eq.(3.1.10) or [14, 29]. In the following, we introduce the hypercircle-based

a posteriori error estimation [17, 29].

As in Chapter 2, assume u ∈ H1
0 (Ω) to be the solution of the variational problem with

f ∈ L2(Ω):

(∇u,∇v) = (f, v) , ∀v ∈ H1
0 (Ω) . (5.1.1)
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Let uh ∈ H1
0 (Ω) be the solution of (4.1.16) with f replaced by Qhf , that is,

(∇uh,∇v) = (Qhf, v) , ∀v ∈ H1
0 (Ω) . (5.1.2)

Noting that (f − Qhf, v) = (f − Qhf, v − Qhv) for each v ∈ H1
0 (Ω) (⊂ L2(Ω)), we have

that

‖∇(u− uh)‖ ≤ Ch
0 h‖f −Qhf‖ ( ≤ Ch

0

2
h2|f |1 if f ∈ H1(Ω) ) , (5.1.3)

where

Ch
0 := max

K∈T h
C0(αK, θK), h := max

K∈T h
hK . (5.1.4)

Here, {αK , θK, hK} are the ones related to the element K as in Section 2.2.

For ph ∈ W h (⊂ H(div; Ω)) with div ph = Qhf , we find that, for each v ∈ H1
0 (Ω),

‖∇v−ph‖2 = ‖∇(v−uh)‖2 +‖∇uh−ph‖2, ‖∇uh− 1

2
(∇v+ph)‖ =

1

2
‖∇v−ph‖ . (5.1.5)

The equations above imply that the three points ∇uh, ∇v and ph in L2(Ω)2 make a hyper-

circle, the first having a right inscribed angle. Here, the vector function ph is available as

a FEM approximation of u, e.g., the Raviart-Thomas mixed FEM solution. By a proper

choice of concrete function v ∈ H1
0 (Ω) and applying the hypercircle equalities (5.1.5), we

can obtain a posteriori error estimates for (∇u− ph):

‖∇u− ph‖Ω ≤ ‖∇(u− uh)‖Ω + ‖ph −∇uh‖Ω ≤ ‖∇(u− uh)‖Ω + ‖∇v − ph‖Ω. (5.1.6)

Another approximation of u is given by (∇v + ph)/2 with the error estimate:

‖∇u− 1

2
(∇v + ph)‖Ω ≤ ‖∇(u− uh)‖Ω +

1

2
‖∇v − ph‖Ω . (5.1.7)

A typical example of v is the conforming P1 finite element solution, for example, the

continuous piecewise linear function uh ∈ V h
0 defined in (2.1.4). Another example is

obtained by appropriate post-processing, such as nodal averaging or smoothing, of non-

conforming FEM solution such as the uh ∈ V h
nc characterized in (3.1.3). A cheap method

of constructing a nice v may be also an interesting subject. If we use ∇huh, the one in

V h
nc in (3.1.3), instead of the modified one ũh ∈ V h, we must evaluate some additional

terms. Fortunately, such evaluation can be done explicitly by using Ch
0 and some positive

constants.
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5.2 Nonconforming FEM and Raviart-Thomas

mixed FEM

We have already introduced the Raviart-Thomas space W h for auxiliary purposes.

But it is well known that the present nonconforming FEM is closely related to the mixed

Raviart-Thomas FEM [5, 35]. Here we will summarize the implementation of such a

mixed FEM by slightly modifying the original nonconforming P1 scheme described by

Eq.(3.1.3). The original idea in [5, 35] is based on the enrichment by the conforming

cubic bubble functions with the L2 projection into W h, but we here adopt nonconforming

quadratic bubble ones to make the modification procedure a little simpler.

Here, we write V h
nc defined in Eq. (3.1.2) as V h for simplicity. Firstly, we replace f in

Eq.(3.1.3) by Qhf . Then uh is modified to u∗h ∈ V h defined by

(∇hu
∗
h,∇hvh) = (Qhf, vh) , ∀vh ∈ V h. (5.2.1)

Secondly, we introduce the space V h
B of nonconforming quadratic bubble functions by

defining its basis function φK associated to each K ∈ T h as follows: φK vanished outside

K and its value at x ∈ K is given by

φK(x) =
1

2
|xG|2 − 1

12

3∑

i=1

|x(i) − xG|, (5.2.2)

where | · | is the Euclidean norm of R
2, xG is the barycenter of K, and x(i)’s for i = 1, 2, 3

is the i-th vertex of K. It is easy to see that the line integration of φK for each e of K

vanishes: ∫

e

φKdγ = 0 . (5.2.3)

Now the enriched nonconforming finite element space Ṽ h is defined by the following direct

sum:

Ṽ h = V h ⊕ V h
B . (5.2.4)

By Eq.(5.2.3) and the Green formula, we find the following orthogonality relation for

(∇h·,∇h·):
(∇hvh,∇hβh) = 0 , ∀vh ∈ V h, ∀βh ∈ V h

B . (5.2.5)

Then the modified finite element solution ũh ∈ Ṽ h is defined by

(∇hũh,∇hṽh) = (Qhf, ṽh), ∀ṽh ∈ Ṽ h . (5.2.6)
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Thanks to Eq.(5.2.4), the present ũh can be obtained as the sum:

ũh = u∗h + αh , (5.2.7)

where u∗h ∈ V h is the solution of (5.2.1), and αh ∈ V h
B is determined by

(∇hαh,∇hβh) = (Qhf, βh), ∀βh ∈ V h
B , (5.2.8)

i.e., completely independent of u∗h. Moreover, αh can be decided by element-by-element

computations. More specifically, denoting αh|K as αKφK|K, Eq.(5.2.8) leads to

αK(∇φK,∇φK)K = (Qhf, φK)K, ∀K ∈ T h, (5.2.9)

where (·, ·) denotes the inner products of both L2(K) and L2(K)2.

LetXh be the piecewise constant function space over triangulation T h. Define {ph, uh} ∈
L2(Ω)2 ×Xh by

ph = ∇hũh, uh = Qhũh . (5.2.10)

By applying the Green formula to Eq.(5.2.6), we can show that ph ∈ W h, and also that

the present pair {ph, uh} satisfies the determination equations of the lowest-order Raviart-

Thomas mixed FEM:

{
(ph, qh) + (uh, div qh) = 0; ∀qh ∈ W h,

(divph, vh) = −(Qhf, vh); ∀vh ∈ Xh.
(5.2.11)

By the uniqueness of the solutions, {ph, uh} is nothing but the unique solution of Eq.(5.2.11).

In conclusion, denoting the constant value of Qhf |K by fK

(
=
∫

K
fdx/meas(K)

)
, we

have for K ∈ T h and x ∈ K that

αK = −1

2
fK, ũh(x) = u∗h(x) + αKφK(x) = u∗h(x) −

1

4
fK(|x− xG|2 − 1

6

3∑

i=1

|x(i) − xG|2),

ph(x) = ∇hu
∗
h(x)−

1

2
fK(x− xG), uh(x) = u∗h(x

G)− 1

16
fK(|xG|2 − 1

3

3∑

i=1

|x(i)|2), (5.2.12)

which coincide with those in [35] and are easy to compute by post-processing.

Now we state the following theorem.
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Theorem 5.2.1. Given data function f ∈ L2(Ω), suppose u ∈ H1
0(Ω) to be the solution

of (2.1.2) or (4.1.16) and u∗
h ∈ V h

nc the nonconforming FEM solution of (5.2.1). We

post-process u∗h to construct ph ∈ W h (⊂ H(div; Ω)) as we do in (5.2.12). Then for any

v ∈ H1
0 (Ω), we have

‖∇u−∇v‖Ω + ‖∇u− ph‖Ω ≤ ‖∇v − ph‖Ω + Ch
0 h‖Qhf − f‖Ω . (5.2.13)

If f belongs to H1(Ω) as well, the estimate can be further improved as

‖∇u−∇v‖Ω + ‖∇u− ph‖Ω ≤ ‖∇v − ph‖Ω + (Ch
0 )2h2|f |1,Ω . (5.2.14)

Remark 5.2.1. If we prefer to give an error estimate for nonconforming solution uh, we

can have a rough one based on equation (5.2.12),

‖∇u−∇huh‖ ≤ ‖∇u− ph‖ +
1

2
‖
∑

K∈T h

fKφK‖ (5.2.15)

≤ ‖∇u− ph‖ +

√
2

2
h ‖f‖ (5.2.16)

Remark 5.2.2. As we can see, the error estimations in Theorem 5.2.1 is based on the

auxiliary problem of modified Poisson’s equation with Qhf . In practical computation, we

can omit such pre-processing of f and solve the variational equation (3.1.3) directly to

obtain uh. Then after post-processing as we do in (5.2.12) , that is, on each K ∈ T h,

p̂h(x) = ∇huh(x) −
1

2
fK(x− xG),

we can obtain p̂h, which may not belong to W h any more. To give an error estimate for

‖∇u− p̂h‖, we estimate the term ph − p̂h = ∇hu
∗
h −∇huh as

‖∇hu
∗
h −∇uh‖ ≤ Ch

0h‖Qhf − f‖ .

Thus, taking ph in equation (5.2.13) as ph = p̂h + (ph − p̂h), we can deduce an error

estimate as

‖∇u− p̂h‖Ω ≤ ‖∇v − p̂h‖Ω + 3Ch
0h‖f −Qhf‖Ω . (5.2.17)

Notice that the part ‖f −Qhf‖ converges to zero faster if f belongs to H1(Ω).
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5.3 Numerical results

To confirm the validity of the error estimates in Theorem 5.2.1, we will consider two

computational examples for Poisson’s equation with the homogeneous Dirichlet boundary

condition: one is over the unit square domain and the other the L-shaped domain.

5.3.1 Poisson’s equation over the unit square

As in Section 3.7, we take f = sin πx1 sin πx2 ∈ H1(Ω). We here show only the

estimate (5.2.13) to see its efficiency.

slope= 1

∗ ||∇u −∇huh||
◦ a priori estimate

+ a posteriori estimate

∗

∗

∗

∗

◦

◦

◦

◦

+

+

+

+

0.50.250.1250.0625
0.005

0.01

0.02

0.05

0.1

0.2

h (log-scale)

Figure 5.1: Numerical results for ‖∇u−∇huh‖ and its estimates versus h

As the domain is triangulated in the same way as in Section 3.7, we can take the value

of the constant Ch
0 as Ch

0 = 1/π. The function v in (5.2.13) is taken as the P1 conform-

ing FEM solution defined in (2.1.4). The computational results are shown in Figure 5.1,

where we can see that the a posteriori one gives a better result than the a priori one.

5.3.2 Poisson’s equation over L-shaped domain

Secondly, we consider the Poisson’s problem on L-shaped domain (see Fig 5.2) with

homogeneous Dirichlet condition:

−∆u = f in Ω; u = 0 on ∂Ω ,
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where f ∈ L2(Ω) is given by

f = sin
2

3
θ

(
2r2/3 +

14

3
(r − 1)r−1/3

)
, r ≤ 1; f = 0, r > 1 .

Here (r, θ) are the variables in the polar coordinates. Also, the fact that f /∈ H 1(Ω) is

easy to verify.

Since the domain has an interior angle to be obtuse, we know that the solution belongs

to H1(Ω) but may not belong to H2(Ω), which make both the a priori and a posteriori

error estimates difficult. In current case, we know the exact solution for the problem is

u = (r − 1)2r2/3 sin(
2

3
θ), r ≤ 1; u = 0, r > 1 .

It is easy to see that u ∈ H1(Ω) but u /∈ H2(Ω).

(−1,−1) (0,−1)

(0, 0)
(1, 0)

(1, 1)(−1, 1)

Figure 5.2: L-shaped domain

Subdivide the domain by right triangles as in Figure 5.2 and then solve the given

problem by utilizing the conforming finite element space V h
conf and the nonconforming

one V h
nc. Let uN

h ∈ V h
nc be the one that

(∇hu
N
h ,∇hvh) = (Qhf, vh), ∀vh ∈ V h

nc(Ω) , (5.3.1)

and uC
h ∈ V h

conf be the one for

(∇uC
h ,∇vh) = (f, vh); ∀vh ∈ V h

conf(Ω) . (5.3.2)

By post-processing uN
h as we deal with u∗h in (5.2.12), we can also obtain ûN

h and ph =

∇hû
N
h . Then we apply the estimate in (5.2.13) to give an estimate for both ‖∇u−∇uC

h ‖
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and ‖∇u−∇hû
N
h ‖, where the constant Ch

0 can be taken as Ch
0 = C0 = 1/π. We summarize

the computational results in Table 5.1.

h ‖∇u−∇uC
h ‖ ‖∇uC

h −∇hû
N
h ‖+C0h‖f −Qhf‖ = total estimate

1/2 0.4315 0.4476 + 0.2576 = 0.7052

1/4 0.2778 0.3719 + 0.0865 = 0.4584

1/8 0.1661 0.2064 + 0.0291 = 0.2355

1/16 0.0985 0.1280 + 0.0098 = 0.1378

1/32 0.0587 0.0786 + 0.0033 = 0.0819

Table 5.1: A posteriori estimates in the case of L-shaped domain
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Chapter 6

Overview and future work

6.1 Summary of present research

For the well known linear conforming and nonconforming triangular FEMs, we have

studied the corresponding interpolation errors to give quantitative a priori and a posteriori

error estimates for the FEM solutions.

In this process, we have given systematic analysis for the error constants that appear

in the interpolation error estimation. For each constant, we have studied the dependency

of the constants on geometric parameters of the element and tried to determine the con-

crete values or give suitable upper bounds in special cases. Thus the quantitative but

rough interpolation error estimation becomes available for arbitrary element. Here we

summarize the results below.

On triangle Tα,θ,h, for u ∈ H2(Tα,θ,h), v ∈ H1(Tα,θ,h) and q ∈ H(div;Tα,θ,h),

Π0
α,θ,h : ‖v − Π0

α,θ,hv‖ ≤ 1/π φ0(θ)h |u|1,
Π1

α,θ,h : |u− Π1
α,θ,hu|1 ≤ 1/2 φ4(θ)h |u|2,

‖u− Π1
α,θ,hu‖ ≤ 0.36 φ5(θ)h

2 |u|2 ,
Π1,n

α,θ,h : ‖u− Π1,n
α,θ,hu‖ ≤ 1/(4π)φ0(θ) h

2 |u|2,
‖∇u−∇hΠ

1,n
α,θ,hu‖ ≤ 1/πφ0(θ) h |u|2,

ΠF
α,θ,h : ‖q − ΠF

α,θq‖ ≤ CF,1(α, θ)h‖div q‖ + CF,2(α, θ)h|q|1 ,

where φi(θ)’s are defined in (3.2.15) and CF,i’s defined in (3.3.7) and (3.3.9).
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Also, the analysis of the dependency of the constants on geometric parameters en-

sures the uniform boundedness of Ci(α, θ)’s (i = 0, 1, 2, 3, 5, {4, n}, {5, n}) on arbitrary

element with fixed medium edge length. On the contrary, the constants C4(α, θ) and

CF,2(α, θ) will tend to ∞ when the maximum angle tends to π. Therefore, when we use

either conforming FEM or nonconforming one, we should follow the ”maximum angle

condition” in the triangulations of the domain, that is, the maximum interior angle of

the triangle should be bounded above from π, while the smallest angle can be close to zero.

To evaluate the constants on arbitrary triangular element, we also developed an a

posteriori estimation method to give computable lower and upper bounds for the con-

stants. Such method is based on the theories of the eigenvalue problem for Laplacian.

Not limited to triangular domains, the method we developed can also be used to estimate

the minimum positive eigenvalue of Laplacian on more general domains. One example of

convex polygonal domain has been executed to show the validity of the method.

Combining the explicit error estimates for interpolation and the analysis for conforming

FEM and nonconforming one in Section 2.1.2 and 3.1, we can obtain computable a priori

error estimates, which are summarized in (2.1.8) and (2.1.9) in the conforming case, and

(3.1.15) and (3.1.17) for the nonconforming one. Compared with the earlier results of

[4, 45] for the conforming FEM, our error bounds is much shaper since better estimates

of the constants are adopted. The a posteriori error estimate based on the hypercircle

method is also developed for the Poisson equation, which uses both conforming FEM

solution and the nonconforming one.

6.2 Future research

The research on evaluating error constants and enclosing eigenvalues is very interest-

ing and challenging work. Compared with the results obtained in this dissertation, there

are much more left to do in the future. Here, let us list up some possible and meaningful

researches in the future.

In the following subsections, we will give a sketch of three topics, that is,

1. evaluation of the second and also n-th eigenvalues of Laplacian,
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2. use of conforming space of vector functions for evaluating eigenvalues of biharmonic

operator,

3. study of error constants in anisotropic element.

6.2.1 Enclosing the second eigenvalue of Laplacian

In the previous chapters, we have developed methods to give quantitative estimates

for error constants, which correspond to the first positive eigenvalue of linear operators.

Here, we will consider the problem of estimating the second eigenvalue of Laplace opera-

tor. This work is still under progress and is not completed yet.

Preliminary

Unlike the notation in previous chapters, we here define by T a general triangle. The

edges of T are denoted by e1, e2 and e3. Let us introduce a linear space V 1(T ) or V 1:

V 1(T ) := {v ∈ H1(T )|
∫

e1

v ds = 0} .

and the constant C be defined in term of the Rayleigh quotient:

C−2 := λ = inf
u∈V 1\{0}

R(u), where R(u) :=
|u|2H1(T )

‖u‖2
L2(T )

for u ∈ H1(T ) \ {0} .

Figure 6.1: Triangle T

Recall that when T is a unit isosceles right triangle and e1 is one of the edges of right

interior angle, the constant above reduces to the Babuška-Aziz constant.
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We can also characterize λ in the variational form: Find the eigenpair (λ, u) ∈ R ×
(V 1(T ) \ {0}) with λ being the smallest positive eigenvalue such that

(∇u,∇v) = λ(u, v), ∀v ∈ V 1(T ) . (6.2.1)

In this section, we will try to consider the second eigenpair (λ2, u2) of the eigenvalue

problem (6.2.1). To distinguish the pairs from each other, we write the first eigenpair by

(λ1, u1). Moreover, the eigenfunction ui’s (i = 1, 2) are assumed to be normalized and

orthogonal to each other in L2(T ), that is,

‖u1‖L2(T ) = ‖u2‖L2(T ) = 1, (u1, u2) = 0 .

Approximation in conforming finite element space

Let Sh be the conforming piecewise linear finite element space over a triangulation

T h of T , and V 1,h := Sh ∩ V 1. We consider the eigenvalue problem in V 1,h: Find

(λh, uh) ∈ R ×
(
V 1,h \ {0}

)
such that

(∇uh,∇vh) = λh(uh, vh), ∀vh ∈ V 1,h . (6.2.2)

The i-th eigenpair is denoted by (λi,h, ui,h). By the minimum-maximum principle to be

mentioned below, it is easy to see λi ≤ λi,h (i = 1, 2). The estimate for |λ1 − λ1,h| was

given in Section 4.3 (or cf. [34]).

To approximate the functions u1 and u2, we introduce two associated functions u1,h

and u2,h, which are characterized by the following variational equations: for u1,h ∈ V 1,h ,

(∇u1,h,∇vh) = λ1(u1, vh), ∀vh ∈ V 1,h . (6.2.3)

and for u2,h ∈ V 1,h,

(∇u2,h,∇vh) = λ2(u2, vh), ∀vh ∈ V 1,h . (6.2.4)

By arguments analogous to those in Section 4.3, we find |ui|2,T ≤ M‖∆ui‖L2(T ) (i =

1, 2). Further noticing the fact that −∆ui = λiu, we have

|ui|H2(T ) ≤M‖∆ui‖L2(T ) ≤Mλi (i = 1, 2) . (6.2.5)
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Considering the finite element error estimates for the approximation u1,h and u2,h as

in (2.1.8) and (2.1.9), we have for each i = 1, 2 that

‖∇(ui − ui,h)‖ ≤ κh|ui|2,T ≤ κhMλi, ‖ui − ui,h‖ ≤ κ2h2|ui|2,T ≤ κ2h2Mλi , (6.2.6)

where M = 2 +
√

2/2 is the same one as in Theorem 4.3.1, and κ and h are defined by

κ := max
K∈T h

C4(αK, θK), h := max
K∈T h

hK .

Here αK, θK and hK are parameters related to element K (cf. Section 2.2). Notice that

κ can be given concrete upper bounds due to the estimates in Chapter 2.

Minimum-maximum principle

By the minimum-maximum principle [50], the n-th eigenvalue of the problem (6.2.1)

and (6.2.2) are characterized respectively by

λn = min
Bn

max
u∈Bn

R(u), λn,h = min
Bn,h

max
uh∈Bn,h

R(uh) , (6.2.7)

where Bn and Bn,h present any n-dimensional subspaces of V 1 and V 1,h respectively, i.e.,

dim|Bn| = dim|Bn,h| = n ∈ N.

From the assumption that (u1, u2)T = 0 and the error estimates in (6.2.6), we can

show that u1 and u2 are linearly independent if

κ2h2Mλi < 1/2 (i = 1, 2) . (6.2.8)

Notice that the above condition can be numerically verified by considering the relation

that λi ≤ λi,h for i = 1, 2, where λi,h’s are computable. Therefore, with the condition

(6.2.8) satisfied, we can construct one 2-dimensional space B2,h ⊂ V 1,h by

B2,h = span{u1,h, u2,h} . (6.2.9)

Let us introduce a new quantity λh := maxuh∈B2,h
R(uh). Then we have

λ1 ≤ λ1,h ≤ R(u1,h), λ2 ≤ λ2,h ≤ λh . (6.2.10)

Estimate of second eigenvalue
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As is well known, the value λh can be characterized by the maximum eigenvalue of

the following eigenvalue problem:
(

(∇u1,h,∇u1,h) (∇u1,h,∇u2,h)
(∇u2,h,∇u1,h) (∇u2,h,∇u2,h)

)(
c1
c2

)
= λh

(
(u1,h, u1,h) (u1,h, u2,h)
(u2,h, u1,h) (u2,h, u2,h)

)(
c1
c2

)
,

(6.2.11)

where (c1, c2)
T is the eigenvector corresponding to λh. The matrix equation above is in

fact an approximation of the one below:
(

(∇u1,∇u1) 0
0 (∇u2,∇u2)

)(
x1

x2

)
= λ

(
(u1, u1) 0

0 (u2, u2)

)(
x1

x2

)
. (6.2.12)

As each component of matrices in (6.2.12) can be well approximated by the corresponding

one in (6.2.11), the eigenvalue λh is expected to be close to λ2.

By considering Eq.(6.2.3) and Eq.(6.2.4), we can transform (6.2.11) into
(

(λ1u1 − λhu1,h, u1,h) (λ1u1 − λhu1,h, u2,h)

(λ2u2 − λhu2,h, u1,h) (λ2u2 − λhu2,h, u2,h)

)(
c1
c2

)
= 0 . (6.2.13)

Hence, we obtain a determination equation for λh as follows:

a λ
2

h + b λh + c = 0 , (6.2.14)

where the coefficients {a, b, c} are




a = ‖u1,h‖2 · ‖u2,h‖2 − (u1,h, u2,h)
2 ,

b = −λ2(u2, u2,h) · ‖u1,h‖2 − λ1(u1, u1,h) · ‖u2,h‖2 + (λ1(u1, u2,h) + λ2(u2, u1,h)) · (u1,h, u2,h) ,

c = λ1λ2(u1, u1,h) · (u2, u2,h) − λ1λ2(u1, u2,h) · (u2, u1,h) .

Before giving bounds for {a, b, c}, we summarize the estimates for the terms appearing

above: for i, j = 1, 2, (i 6= j)




1 − κ2h2Mλi ≤ ‖ui,h‖ ≤ 1 + κ2h2Mλi ,

1 − κ2h2Mλi ≤ (ui, ui,h) ≤ 1 + κ2h2Mλi ,

|(ui, uj,h)| ≤ κ2h2Mλj ,

|(ui,h, uj,h)| ≤ |(ui,h − ui, uj,h)| + |(ui, uj,h)| ≤ (κ2h2Mλi)(1 + κ2h2Mλj) + κ2h2Mλj .

(6.2.15)

Hence, we can give estimates for a, b and c as




a ∈ [1 − ε1, 1 + ε1] ,
b ∈ [−(λ1 + λ2) − ε2,−(λ1 + λ2) + ε2] ,
c ∈ [λ1λ2 − ε3 , λ1λ2 + ε3] ,
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where each εi (i = 1, 2, 3), depending on variables λ1 and λ2, is constructed to be mono-

tonically increasing with respect to each variable if we fix the other one. Clearly, λh is

the maximum solution of Eq.(6.2.14), that is,

λh =
−b +

√
b2 − 4ac

2a
. (6.2.16)

By using the fact that λ1 ≤ λ2 and the known estimate for λ1, we can obtain an upper

bound for λh as

(λ2,h ≤) λh ≤ φ(M,κ, λ1, h;λ2) , (6.2.17)

where φ(M,κ, λ1, h;λ2), to be denoted by notation φ(λ2) for simplicity, is selected to be

a monotonically increasing function with respect to λ2 and φ(λ2) → λ2 as h → 0. The

inequality above is in fact an a priori estimate of λh.

Combining the estimate in (6.2.10) and (6.2.17), we have one computable a posteriori

estimate for λ2:

φ−1(λ2,h) ≤ λ2 ≤ λ2,h , (6.2.18)

provided that the estimate for λ1 is known. At present, we have not fully succeeded in

evaluating the error of λ1 and its influence to φ.

Remark 6.2.1. The procedure above aims to give an upper bound for λh by λ1 and λ2,

where we rely on the quadratic formula (6.2.16) to give an explicit form of λh. However,

to evaluate the n-th eigenvalue, the eigenvalues of (6.2.11) are the zeros of polynomial of

degree n, which does not have any explicit formula for n ≥ 5. To solve this problem, we

are considering other methods by adopting the interval computations.

Remark 6.2.2. If the computation shows that λ1,h < λ2,h and |λ2,h − λ2| < |λ2,h − λ1,h|,
then we have λ1 ≤ λ1,h < λ2. Thus λ2 is separated from λ1, which means the multiplicity

of the first eigenvalue λ1 to be 1. Also, by adopting the minimum-maximum principle, we

may hope to develop a posteriori estimation method to evaluate the n-th eigenvalue.

6.2.2 Space of conforming vector functions for estimating eigen-

values of biharmonic operator

For the constants such as C4(α, θ) and C{4,n}(α, θ), the corresponding weak forms
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have 2nd order derivatives, which make the problems very difficult to solve. As for this,

in section 2.4.2, we have introduced a new constant C{4,e123}(α, θ), which has the Rayleigh

quotient defined over space of vector fileds. By using the finite dimensional space for con-

forming vector functions, we can get approximate values of C{4,e123}(α, θ) (Figure 2.7 and

Figure 2.8), which seem to give nice upper bounds for C4(α, θ). As an alternative to

direct estimation of C4(α, θ), it may be meaningfurl to evaluate the constant C{4,e12} by

applying the conforming finite element methods. Since there are only derivatives up to

the first order in the corresponding PDE, it is desirable to give a posteriori estimates like

those for Ci(α, θ) (i = 0, 1, 2, 3).

The conforming vector function space suggested above is defined on triangle Tα,θ by

Mh := {w = (u, v) ∈ Sh(Tα,θ)
2 |
∫

ei

w · tids = 0, i = 1, 2, 3} , (6.2.19)

where each ti is the normalized vector in the direction of edge ei and Sh(Tα,θ) is the

conforming finite element space composed of the piecewise linear functions. Noticing that

Sh(Tα,θ) ⊂ H1(Tα,θ), it is easy to see that Mh is a subspace of the following one:

M := {w = (u, v) ∈ H1(Tα,θ)
2 |
∫

ei

w · tids = 0, i = 1, 2, 3} . (6.2.20)

Such finite element space is effective to compute approximate values of C{4,e123}.

However, the space Mh is not included to

Mgrad := {(∂1u, ∂2u) | u ∈ V 4(Tα,θ)} ,

where the curl-free condition ∂12u − ∂21u = 0 is required. So we hope to design a new

conforming FE space such that

Mh
grad := {w = (uh, vh) ∈ Sh(Tα,θ)

2 |
∫

ei

w · tids = 0 (i = 1, 2, 3) and

∂2uh = ∂1vh in Tα,θ.} . (6.2.21)

The approximation capability of the functions inMh
grad may be doubtful, since the curl-

free constraint requires the same number of algebraic relations as that of finite elements.

But our analysis shows that the vector (∂1u, ∂2u) seems to be well approximated by

functions in Mh
grad if u is smooth enough. Numerical computations in several cases also
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demonstrate the validity of such conforming vector function spaces. However, there are

still much efforts needed for systematic analysis.

Once the theoretical analysis for the conforming vector function spaces is done, it may

be possible to design a posteriori estimation method to deal with the eigenvalue problems

of biharmonic operator, e.g., those for C4(α, θ).

6.2.3 Error constants for anisotropic element

An anisotropic element is a finite element that can be very slender in one direction,

and the maximum angle of the triangular element may be close to π. Such an element is

often required in the analysis of the convection-dominated equations, which appears in the

problems of heat transport in water flow, carrier transport in semiconductors and so on. In

view of singular perturbations, these problems accompany special boundary layers where

the solution varies much faster in the normal direction than in the tangential direction.

Therefore, the anisotropic mesh optimization with the adaptive finite element method is

indispensable. We hope to give sharper a posteriori error estimation and improve mesh

optimization, by which computation time can be greatly saved.

As we mentioned in Remark 2.2.1, we may give error estimation of the form

|v − Π1
α,θ,hv|1,Tα,θ,h

≤ h

(
2∑

i,j=1

cij‖∂ijv‖2
Tα,θ,h

)1/2

for v ∈ H2(Tα,θ) , (6.2.22)

where cij’s are to be suitably chosen to give sharp estimates for given function v.

A conventional way in error analysis is first to consider the interpolation error con-

stants on a reference element and then consider an appropriate transformation between

an arbitrary element and the reference one. Therefore, we can find proper choice of cij’s

and decide the element direction according to the a priori estimate for the given function

v [20]. But the optimal estimate cannot be obtained in such a way. To sharpen the

estimate, we need to directly consider the interpolation error estimate on slender triangle.

Moreover, the interpolation function considered there usually has a priori information,

which will lead to the nonlinear constraints for the corresponding minimization problems.

The processing of these nonlinear constraints may still remain as a challenge.
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